Solution of a Cauchy problem for iterated generalized two-axially symmetric equation of hyperbolic type

Shakhobiddin. T. Karimov ${ }^{1}$
${ }^{1}$ Faculty of Mathematics and Physics, Ferghana State University, Ferghana-150100, Republic of Uzbekistan
E-mail: shkarimov09@rambler.ru

$$
\begin{align*}
& \text { Abstract: In the work an explicit solution of Cauchy problem for iter- } \\
& \text { ated generalized two-axially symmetric equations of hyperbolic type was con- } \\
& \text { structed. } \\
& \text { In this work, we considered an analogue of the Cauchy problem in a domain } \\
& \Omega=\{(x, y): 0<y<x\} \text { finding a classical solution } u(x, y) \in C^{2 m-1}(\bar{\Omega}) \text { of the } \\
& \text { equation } \\
& \qquad\left[h_{\beta, \alpha}^{\lambda}\right]^{m}(u) \equiv\left(\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial x^{2}}-\frac{2 \alpha}{x} \frac{\partial}{\partial x}+\frac{2 \beta}{y} \frac{\partial}{\partial y}+\lambda^{2}\right)^{m} u(x, y)=0 \tag{1}
\end{align*}
$$

satisfying the initial conditions

$$
\begin{equation*}
\left.\frac{\partial^{2 k} u}{\partial y^{2 k}}\right|_{y=0}=\varphi_{k}(x), x \geqslant 0 ;\left.\quad \frac{\partial^{2 k+1} u}{\partial y^{2 k+1}}\right|_{y=0}=0, x \geqslant 0, \quad k=\overline{0, m-1} \tag{2}
\end{equation*}
$$

where $\alpha, \beta, \lambda \in R, m \in N$, and $0<\alpha<1,0<\beta<1 / 2, \varphi_{k}(x),(k=$ $\overline{0, m-1}$) are given smooth functions.

By applying two-dimensional generalized Erdelyi-Kober operator [1], the explicit formula of a solution of the problem $\{(1),(2)\}$ was received

$$
u(x, y)=\sum_{n=0}^{m-1} \frac{2^{-2 n} y^{1-2 \beta}}{n!\Gamma(\beta+n)} \int_{x-y}^{x+y} f_{n}(s)\left(\frac{s}{x}\right)^{\alpha} \frac{\Xi_{2}(\alpha, 1-\alpha ; \beta+n ; \sigma, \omega)}{\left[y^{2}-(x-s)^{2}\right]^{1-\beta-n}} d s
$$

where $f_{n}(x)=\sum_{j=0}^{n}(-1)^{j} C_{n}^{j}\left[B_{\alpha-1 / 2}^{x}\right]^{j} \tilde{\varphi}_{n-j}(x), \quad \tilde{\varphi}_{n}(x)=\sum_{j=0}^{n} \gamma_{n} C_{n}^{j} \lambda^{2(n-j)} \varphi_{j}(x)$, $\gamma_{n}=\Gamma((2 n+1) / 2+\beta) / \Gamma((2 n+1) / 2), \sigma=\left[y^{2}-(s-x)^{2}\right] /(4 x s), \omega=$ $-\left(\lambda^{2} / 4\right)\left[y^{2}-(s-x)^{2}\right], \Xi_{2}(\alpha, 1-\alpha ; \beta+n ; \sigma, \omega)$ is Humbert hypergeometric function.

Keywords: Erdélyi-Kober operator, two-axially symmetric equations

References

[1] Karimov Sh.T., "Multidimensional generalized Erdélyi-Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients", // Fract. Calc. Appl. Anal., Vol. 18, No 4 (2015), pp. 845-861.

