Necessary and sufficient condition that function belong to the Nikolskii-Morrey space $H^{(r)}M_{px_1}^{\lambda}$.

Nurgul KYDYRMINA¹

¹ Institute of Applied Mathematics, Karaganda, Kazakhstan E-mail: nurgul-k@mail.ru

Abstract: In this paper there were established the necessary and sufficient conditions that the function belongs to the Nikolskii-Morrey space $H^{(r)}M_{px_1}^{\lambda}$.

Definition 0.1. Let $0 , <math>0 \leq \lambda \leq \frac{n}{p}$. Denote by $M_p^{\lambda}(\mathbb{R}^n)$ the space of all real-valued function f, measurable on \mathbb{R}^n , such that

$$\|f\|_{M_{p}^{\lambda}(\mathbb{R}^{n})} = \sup_{\substack{x \in \mathbb{R}^{n} \\ \rho > 0}} \|\rho^{-\lambda}\|f\|_{L_{p}(B(x,\rho))}\|_{L_{\infty}(0,\infty)} < \infty.$$

Definition 0.2. We say measurable function $f(x_1, \ldots, x_n)$ belongs to the class $H^{(r)}M_{px_1}^{\lambda}(B)$ $(r > 0, 1 \le p \le +\infty)$, if it satisfies the following condition.

Assume that $r = \rho + \alpha$, where ρ is integer and $0 < \alpha \leq 1$. Let for almost all x_2, \ldots, x_n exists the partial derivative $\frac{\partial^{\rho} f}{\partial x_1^{\rho}}$ defined almost everywhere on \mathbb{R}^n that belong to the Morrey space $M_p^{\lambda}(\mathbb{R}^n)$ and such that for all h

$$\left\|\frac{\partial^{\rho}f(x_1+h,x_2,\ldots,x_n)}{\partial x_1^{\rho}}+2\frac{\partial^{\rho}f(x_1,\ldots,x_n)}{\partial x_1^{\rho}}+\frac{\partial^{\rho}f(x_1-h,x_2,\ldots,x_n)}{\partial x_1^{\rho}}\right\|_{M_p^{\lambda}(\mathbb{R}^n)} \leq B|h|^{\alpha}.$$

Definition 0.3. Denote by $A_{\nu x_1}(f; M_p^{\lambda}(\mathbb{R}^n))$ the best approximation of function $f \in M_p^{\lambda}(\mathbb{R}^n)$ by entire functions g_{ν} of exponential type ν in metrics of the space $M_p^{\lambda}(\mathbb{R}^n)$, i.e.

$$A_{\nu x_1}(f; M_p^{\lambda}(\mathbb{R}^n)) = \inf_{g_{\nu}} \|f - g_{\nu}\|_{M_p^{\lambda}(\mathbb{R}^n)}.$$

Theorem 0.4. Function $f \in M_p^{\lambda}(\mathbb{R}^n)$ belongs to the class $H^{(r)}M_{px_1}^{\lambda}$ (with some constant B), if and only if there exists the constant K such that

$$A_{\nu,x_1}(f; M_p^{\lambda}(\mathbb{R}^n)) < \frac{K}{\nu^r},$$

for all $\nu \ge 1$ or for all ν that run over geometric increasing progression $\nu = a^k$ (a > 1, k = 0, 1, ...).

This work was supported by the Scientific Committee of the Ministry of Education and Science of the Republic of Kazakhstan, grant No. 1777/GF4.

Keywords: Morrey space, Nikolskii-Morrey space, best approximation, entire functions of exponential type

2010 Mathematics Subject Classification: 41A50, 46E35