Criterion of the boundedness of a fractional integration type operator with variable upper limit in weighted Lebesgue spaces

Akbota Abylayeva L.N. Gumilyov Eurasian National University, 010008 Astana, Satpayev str., 2, Kazakhstan E-mail: abylayeva_b@mail.ru

Abstract: Let $0 < p, q < \infty$, $I = (a, b), -\infty \leq a < b \leq \infty, 0 < \alpha < 1$, $\frac{1}{p} + \frac{1}{p'} = 1$, $R_+ = (0, \infty)$, $W : I \to R$ is a nondecreasing, locally absolutely continuous function and $W(a) = \lim_{t \to a^+} W(t) > -\infty$. $\frac{dW(t)}{dt} = w(t)$, $v : I \to R$ is a non-negative locally integrable function on I and $\varphi : I \to I$ is a strictly increasing locally absolutely continuous function with the properties $\lim_{x \to a^+} \varphi(x) = a$, $\lim_{x \to b^-} \varphi(x) = b$, $\varphi(x) \leq x$, $\forall x \in I$. Consider the operator in a form $K_{\alpha,\varphi}f(x) = \int_a^{\varphi(x)} \frac{f(s)w(s)ds}{(W(x)-W(s))^{1-\alpha}}$, $x \in I$ from $L_{p,w} = L_{p,w}(I)$ to $L_{q,v} = L_{q,v}(I)$, where $L_{p,w}$ is a space of measurable functions $f : I \to R$ for which the functional $||f||_{p,w} = \left(\int_a^b |f(x)|^p w(x)dx\right)^{\frac{1}{p}}$, 0 is finite. In $the case <math>\varphi(x) \equiv x$ the operator $K_{\alpha,\varphi}$ is studied in papers [1], [2].

Theorem. The operator $K_{\alpha,\varphi}$ is bounded from $L_{p,w}$ to $L_{q,v}$ if and only if

1)
$$A = \sup_{a < z < b} \left(\int_{z}^{b} W^{q(\alpha-1)}(x)v(x)dx \right)^{\overline{q}} W^{\frac{1}{p'}}(\varphi(x)) < \infty, \text{ for } 1 < p \le q < \infty$$

and $\frac{1}{p} < \alpha < 1$, where $\|K_{\alpha,\varphi}\| \approx A$;

2)
$$B = \left(\int_{a}^{b} \left(\int_{t}^{b} W^{q(\alpha-1)}(x)v(x)dx\right)^{\frac{q}{p-q}} W^{\frac{q(p-1)}{p-q}}(\varphi(t))\frac{v(t)dt}{W^{q(1-\alpha)}(t)}\right)^{\frac{p-q}{pq}} < \infty,$$

when $0 < q < p < \infty$, $p > \frac{1}{\alpha}$, $0 < \alpha < 1$ and $||K_{\alpha,\varphi}|| \approx B$, where $||K_{\alpha,\varphi}||$ is a norm of the operator $K_{\alpha,\varphi} : L_{p,w} \to L_{q,v}$.

Keywords: fractional integration operator, weighted estimate.

2010 Mathematics Subject Classification: 47A63, 47G10

References

- Abylayeva A.M. and Oinarov R. "Criterion of the boundedness of a class of fractional integration operators", *Mathematical Journal.*, Almaty, Vol.4. No.2(12), p.5-14, 2004.(in Russian)
- [2] Abylayeva A.M. "Criterion of the boundedness of $0 < \alpha < 1$ order fractional integration type operator", Astana. No.6(46), p.130-136, 2005.(in Russian).