Weighted estimates for the integral operator with a logarithmic singularity

Akbota Abylayeva L.N. Gumilyov Eurasian National University, 010008 Astana, Satpayev str., 2, Kazakhstan E-mail: abylayeva_b@mail.ru

Abstract: Let $0 < q < \infty$, $1 , <math>\frac{1}{p} + \frac{1}{p'} = 1$, $R_+ = (0, \infty)$, $U : R_+ \rightarrow R$ and $V : R_+ \rightarrow R$ are wheighted functions, i.e. non-negative measurable functions on R_+ .

Since the 70-s of the last century the weighted estimate of the form

$$\|UKf\|_q \le C \|Vf\|_p \tag{1}$$

intensively studied in the world mathematical literature for different classes of the operators K, where $\|\cdot\|_p$ is the usual norm of the space $L_p \equiv L_p(R)$. Some directions of the research of the estimate (1) until 2000 year for the integral operators are summarized in the books [1], [2], [3]. In the paper [4] the estimate (1) was studied for some classes of the operator Kf and also a full description of weights U and V was given there.

In this paper we study the estimate (1) for the singular operator in the form $Kf(x) = \int_{0}^{x} \ln \frac{x}{x-s} f(s) ds$, when $V(x) = x^{1-\gamma}$, $\gamma > 0$.

Theorem. Let $1 , <math>\gamma > \frac{1}{p}$. The inequality (1) holds if and only if

$$A = \sup_{x>0} x^{\gamma + \frac{1}{p'}} \left(\int_{x}^{\infty} U^{q}(t) t^{-q} dt \right)^{\frac{1}{q}} < \infty,$$

wherein $C \approx A$, where C is the best constant (1).

Keywords: integral operator with logarithmic singularity, weighted estimate.

2010 Mathematics Subject Classification: 47A63, 47G10

References

- Opic, B., Kufner, A., "Hardy-type inequalities", Pitman Research Notes in Math. Series. Longman Scientific and Technical, Horlow, 1990.
- [2] Kufner, A., Persson, L-E., "Integral inegualities with weights", Prague. 2000. -.211.
- [3] Kufner, A., Maligranda, L., Persson, L.-E. "The Hardy inequality -about its history and some related results, *University of West Bohemia*, *Plzen*, p. 152, 2007.
- [4] Oinarov, R., "Boundedness and compactness of integral operators Voltaire types", Sib. Math. J., Vol. 48, No. 5, pp. 1100-1115, 2007. (in Russian).