Recovery of partial differential operators on classes of periodic functions with mixed smoothness

Sholpan BALGIMBAYEVA ¹

¹ Department of Function Theory, Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan E-mail: balgimbayeva@math.kz

Abstract: We consider the problem of optimal linear recovery for mixed partial differential operator \mathcal{A} on the unit ball $SB_{p\theta}^r(\mathbb{T}^n)$ of the Nikol'skii–Besov space of periodic functions with mixed smoothness.

We find error bounds sharp in order for optimal linear recovery of operator \mathcal{A} on class $\mathrm{SB}^r_{p\theta}(\mathbb{T}^n)$. As information $I^\delta_m(f)$ about the functions f from class $\mathrm{SB}^r_{p\theta}(\mathbb{T}^n)$ we shall use Fourier coefficients with numbers from step "hyperbolic" cross.

As the linear method using the information about Fourier coefficients, we shall consider action of the mixed partial differential operator \mathcal{A} on special "private" sum of decomposition on system (type as wavelets) trigonometrical polynoms.

Keywords: Nikol'skii—Besov function space, mixed smoothness, trigonometric system, recovery of differential operator

2010 Mathematics Subject Classification: 42A10