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Abstract: The present lecture deals with the notion of weak o-minimality,
which initially deeply studied in [1]. A subset A of a linearly ordered structure
M is convex if for any a, b ∈ A and c ∈M whenever a < c < b we have c ∈ A. A
weakly o-minimal structure is a linearly ordered structure M = 〈M,=, <, . . .〉
such that any definable (with parameters) subset of the structure M is a finite
union of convex sets in M .

In the following definitions (introduced in [2] and [3] respectively) we assume
that M is a weakly o-minimal structure, A ⊆ M , M is |A|+-saturated, and
p, q ∈ S1(A) are non-algebraic types. We say that p is not weakly orthogonal
to q (p 6⊥w q) if there are an A-definable formula H(x, y), α ∈ p(M), and
β1, β2 ∈ q(M) such that β1 ∈ H(M,α) and β2 6∈ H(M,α). We say that
p is not quite orthogonal to q (p 6⊥q q) if there is an A-definable bijection
f : p(M)→ q(M). We say that a weakly o-minimal theory is quite o-minimal
if the relations of weak and quite orthogonality for 1-types coincide.

Almost ω-categoricity has been introduced in [4] and studied in [5].

Theorem. Any almost ω-categorical quite o-minimal theory is binary.
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