On the compactness of set in generalized Morrey Spaces

Nurzhan BOKAYEV¹, Victor BURENKOV², Dauren MATIN³

¹ Department of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

² RUDN, Moscow, Russia ³ Department of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan E-mail: d.matin@mail.ru

Abstract: In this paper, we present sufficient conditions for strongly precompact sets in the generalized Morrey spaces M_p^w .

Let $1 \leq p \leq \infty$, w(x) measurable non-negative function on $(0, \infty)$. Generalized Morrey space $M_p^{w(R)}$ is defined as the set of functions $f \in L_1^{loc}(R)$ with a finite quasi-norm: $||f||_{M_p^w} \equiv \sup_{t \in R^n, r > 0} w(r) \left(\int_{B(t,r)} |f(x)|^p dx \right)^{\frac{1}{p}} < \infty$, where B(t,r) is a ball with center at the point t and with radius r. For $f \in L_1^{loc}(R)$ and $\alpha > 0$ suppose $(M_\alpha f)(x) = \frac{1}{|B(x,\alpha)|} \int_{B(x,\alpha)} f(y) dy$. We denote by Ω_p the set of all functions which are non-negative , measurable on Ω_p and for some $t_1, t_2 > 0$: $\sup_{t_1 \leq r < \infty} (w(r)) < \infty$, $\sup_{0 < r \leq t_2} \left(w(r)r^{\frac{1}{p}} \right) < \infty$.

Theorem Suppose that $1 \leq p \leq \infty$ and $w \in \Omega_p$. Suppose the subset S in M_p^w satisfies the following conditions:

$$\sup_{f \in S} \|f\|_{M_p^w} < \infty, \ \lim_{u \to 0} \sup_{f \in S} \|f(\cdot + u) - f(\cdot)\|_{M_p^w} = 0, \ \lim_{r \to \infty} \sup_{f \in S} \left\|f\chi_{C_{B(0,r)}}\right\|_{M_p^w} = 0.$$

Then S is strongly pre-compact set in $M_p^w(R)$.

From the proved theorem for the case of $w(r) = r^{-\lambda}$ follows a well-known result for the Morrey space M_p^{λ} [3] and in the case of $\lambda = 0$ this is well-known Frechet-Kolmogorov theorem.

Keywords: Generalized Morrey spaces, compactness

2010 Mathematics Subject Classification: 42B20, 42B99

References

 Chen Y., Ding Y., Wang X.ompactness of Commutatus for Singular Integrals on Morrey Spaces. *Canad.J.Math.* Vol.64(2), pp.257-281, 2012.