On the properties of operators with the semi-power type lacunas

Leonid Falaleev¹

¹ Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan E-mail: v_gulmira@mail.ru

Abstract: For linear matrix operators

$$u_N(f, \Lambda, X) = \frac{a_0}{2} + \sum_{k=1}^N \lambda_k^{(n)}(a_k \cos kx + b_k \sin kx),$$

 $(a_k, b_k \text{ are Fourier coefficients of } f(x))$, constructed with respect to subsequences of the Fourier sums S_{n_k} with the lacunas $n_k = \left[\frac{k^{\gamma}}{\ln^{\beta}(k+1)}\right]$, k = 1, 2, ..., N, a sufficient condition for boundedness of norms $\|u_N\|_{C_{2\pi}}$

(1)
$$||u_N|| \le c \{ n_N^{\frac{1}{\gamma}} \sum_{k=0}^N (\Delta \lambda_k)^2 \ln^{\beta/\gamma} (k+1) [1 + (N-k)^{1-1/\gamma} k^{1/\gamma-1}] \},$$

is given. N is the number of non-zero differences $\Delta \lambda_k = \lambda_{n_k} - \lambda_{n_k+1}$, c > 0, c = const. [y] is the integer part of y. $\beta \ge 0$, $\gamma \ge 1$. $\lambda_k^n \equiv \lambda_k$ are limited multipliers of summation.

Using (1) approximative properties of the discrete analog of biharmonic operators D(f, r, x) are investigated. In particular the precise estimate

(2)
$$\sup_{f \in C^1} \|f(x) - D(f, r, x)\|_{C_{2\pi}} = O\left((\gamma - \beta)\sqrt{(1 - r)\ln^{\beta/\gamma}\frac{1}{1 - r}}\right), \ r \to 1 - .$$

is obtained in the class of differentiable functions C^1 .

If $\gamma = 1$, $\beta = 0$ then (2) coincides with the estimate of the work [1].

Keywords: semi-power type lacunas, biharmonic operator

2010 Mathematics Subject Classification: 42A24

References

[1] Falaleev L.P., Vasilina G.K. "On biharmonic operators rarefied by lacunas VIII Int. symp. "Fourier series and their applications". Rostov-on-Don, pp.28-34, 2014.