Approximation properties of some summation methods in the Smirnov classes with variable exponent

Daniyal ISRAFILOV ${ }^{1,2}$, Ahmet TESTICI ${ }^{1}$
${ }^{1}$ Department of Mathematics, Balikesir University, Balikesir, Turkey
E-mail: mdaniyal@balikesir.edu.tr, testiciahmet@hotmail.com
${ }^{2}$ Institute of Mathematics and Mechanics Baku, Azerbaijan

Abstract

Let $G \subset \mathbb{C}$ be a finite domain in the complex plane, bounded by a rectifiable Jordan curve Γ. The variable exponent Lebesgue spaces $L^{p(\cdot)}(\Gamma)$ for a given Lebesgue measurable variable exponent $p(z) \geq 1$ on Γ we define as the set of Lebesgue measurable functions f, such that $\int_{\Gamma}|f(z)|^{p(z)}|d z|<\infty$. The function $$
\|f\|_{L^{p(\cdot)}(\Gamma)}:=\inf \left\{\lambda>0:_{\Gamma}|f(z) / \lambda|^{p(z)}|d z| \leq 1\right\}
$$ defines a norm on $L^{p(\cdot)}(\Gamma)$. Given Lebesgue measurable function $p(\cdot): \Gamma \rightarrow[1, \infty)$ we define the variable exponent Smirnov classes of analytic functions in G as $E^{p(\cdot)}(G):=$ $\left\{f \in E^{1}(G): f \in L^{p(\cdot)}(\Gamma)\right\}$.

Each function $f \in E^{p(\cdot)}(G)$, has the non-tangential limits almost everywhere (a.e) on Γ and hence if we define $\|f\|_{E^{p(\cdot)}(G}:=\|f\|_{L^{p(\cdot)}(\Gamma)}$, then the space $E^{p(\cdot)}(G)$ is also a normed space of analytic functions in G.

In this work we continue our investigations [1,2], on the approximation problems in the variable exponent Smirnov classes $E^{p(\cdot)}(G)$. Namely, we study the approximation properties of the different approximation aggregates and obtain the appropriate estimations in term of the higher modulus of smoothness for a given function $f \in E^{p(\cdot)}(G)$.

Keywords: Variable exponent Smirnov classes, Faber series, De Vallée Poussin means, Jackson means

2010 Mathematics Subject Classification: 30E10, 41A10
Acknowledgement This work was supported by TÜBITAK grant 114F422:
"Approximation Problems in the Variable Exponent Lebesgue Spaces".

References

[1] Guven, A., and Israfilov, D., "Trigonometric Approximation in Generalized Lebesgue Spaces $L^{p(x) ", ~ J o u r n a l ~ o f ~ M a t h . ~ I n e q u a l i t i e s, ~ V o l . ~ 4, ~ N o .2, ~ p p . ~ 285-299, ~} 2010$.
[2] Israfilov, D., Testici, A., "Approximation in Smirnov classes with variable exponent", Complex Variable and elliptic equations, Vol. 60, No:9, pp. 1243-1253, 2015.

