Approximation properties of some summation methods in the Smirnov classes with variable exponent

Daniyal ISRAFILOV ^{1,2}, Ahmet TESTICI ¹

¹ Department of Mathematics, Balikesir University, Balikesir, Turkey E-mail: mdaniyal@balikesir.edu.tr, testiciahmet@hotmail.com

² Institute of Mathematics and Mechanics Baku, Azerbaijan

Abstract: Let $G \subset \mathbb{C}$ be a finite domain in the complex plane, bounded by a rectifiable Jordan curve Γ . The variable exponent Lebesgue spaces $L^{p(\cdot)}(\Gamma)$ for a given Lebesgue measurable variable exponent $p(z) \geq 1$ on Γ we define as the set of Lebesgue measurable functions f, such that $\int_{\Gamma} |f(z)|^{p(z)} |dz| < \infty$. The function

$$||f||_{L^{p(\cdot)}(\Gamma)} := \inf \left\{ \lambda > 0 :_{\Gamma} |f(z)/\lambda|^{p(z)} |dz| \le 1 \right\}$$

defines a norm on $L^{p(\cdot)}(\Gamma)$.

Given Lebesgue measurable function $p(\cdot) : \Gamma \to [1, \infty)$ we define the variable exponent Smirnov classes of analytic functions in G as $E^{p(\cdot)}(G) := \{f \in E^1(G) : f \in L^{p(\cdot)}(\Gamma)\}.$

Each function $f \in E^{p(\cdot)}(G)$, has the non-tangential limits almost everywhere (a.e) on Γ and hence if we define $||f||_{E^{p(\cdot)}(G)} := ||f||_{L^{p(\cdot)}(\Gamma)}$, then the space $E^{p(\cdot)}(G)$ is also a normed space of analytic functions in G.

In this work we continue our investigations [1,2], on the approximation problems in the variable exponent Smirnov classes $E^{p(\cdot)}(G)$. Namely, we study the approximation properties of the different approximation aggregates and obtain the appropriate estimations in term of the higher modulus of smoothness for a given function $f \in E^{p(\cdot)}(G)$.

Keywords: Variable exponent Smirnov classes, Faber series, De Vallée Poussin means, Jackson means

2010 Mathematics Subject Classification: 30E10, 41A10

Acknowledgement This work was supported by TÜBITAK grant 114F422: "Approximation Problems in the Variable Exponent Lebesgue Spaces".

References

- [1] Guven, A., and Israfilov, D., "Trigonometric Approximation in Generalized Lebesgue Spaces $L^{p(x)}$ ", Journal of Math. Inequalities, Vol. 4, No.2, pp. 285-299, 2010.
- [2] Israfilov, D., Testici, A., "Approximation in Smirnov classes with variable exponent", Complex Variable and elliptic equations, Vol. 60, No:9, pp. 1243-1253, 2015.