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Abstract: Let G ⊂ C be a finite domain in the complex plane, bounded by
a rectifiable Jordan curve Γ. The variable exponent Lebesgue spaces Lp(·)(Γ)
for a given Lebesgue measurable variable exponent p(z) ≥ 1 on Γ we define as

the set of Lebesgue measurable functions f , such that
∫

Γ
|f(z)|p(z) |dz| < ∞.

The function

‖f‖Lp(·)(Γ) := inf
{
λ > 0 :Γ |f(z)/λ|p(z) |dz| ≤ 1

}
defines a norm on Lp(·)(Γ).

Given Lebesgue measurable function p (·) : Γ → [1,∞) we define the vari-
able exponent Smirnov classes of analytic functions in G as Ep(·)(G) : ={
f ∈ E1(G) : f ∈ Lp(·)(Γ)

}
.

Each function f ∈ Ep(·)(G), has the non-tangential limits almost everywhere
(a.e) on Γ and hence if we define ‖f‖Ep(·)(G := ‖f‖Lp(·)(Γ), then the space

Ep(·)(G) is also a normed space of analytic functions in G.

In this work we continue our investigations [1,2], on the approximation prob-
lems in the variable exponent Smirnov classes Ep(·)(G). Namely, we study the
approximation properties of the different approximation aggregates and obtain
the appropriate estimations in term of the higher modulus of smoothness for
a given function f ∈ Ep(·)(G).
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