On boundary value problem for the fourth order mixed type equation with fractional derivative

Bakhtiyor KADIRKULOV ${ }^{1}$, Jambul SERIKBAEV ${ }^{2}$
${ }^{1}$ Tashkent State Institute of Oriental Studies, Uzbekistan
E-mail: berdyshev@mail.ru
${ }^{2}$ ScRI of Math. and Mech., Al-Farabi Kazakh National University, Kazakhstan

Abstract: Many problems in diffusion and dynamical processes, electrochemistry, biosciences, signal processing, system control theory lead to differential equations of fractional order [1]. In the present work we investigate nonlocal problem for the fourth order mixed type equations.

Let $\Omega=\{(x, t): 0<x<1,-p<t<q\}, \Omega^{+}=\Omega \cap(t>0), \Omega^{-}=\Omega \cap(t<0)$, where $p, q>0$. In the domain Ω we consider equation

$$
\begin{equation*}
L u(x, t)=f(x, t) \tag{1}
\end{equation*}
$$

where

$$
L u(x, t)=\left\{\begin{array}{cc}
\frac{\partial^{4} u}{\partial x^{4}}+C D^{2} D^{\alpha} u & t>0, \\
\frac{\partial^{4} u}{\partial x^{4}}+\frac{\partial^{2} u}{\partial t^{2}}, & t<0,
\end{array}\right.
$$

${ }_{C} D_{0 t}^{\alpha} u$ is the Caputo fractional operator of the order $\alpha \in(0,1]$
Problem A. Find a function $u(x, t)$, which is:

1) continuous in $\bar{\Omega}$, together with derivatives appearing in boundary conditions; 2) satisfies equation (1) in domains $\Omega^{+} \cup \Omega^{-} ; 3$) satisfies boundary conditions

$$
\begin{equation*}
u(0, t)=u_{x x}(1, t)=0, u_{x}(1, t)=u_{x}(0, t), u_{x x x}(1, t)=u_{x x x}(0, t),-p \leq t \leq q, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
u(x,-p)=0,0 \leq x \leq 1 ; \tag{3}
\end{equation*}
$$

4) satisfies gluing condition

$$
\begin{equation*}
{ }_{C} D_{0 t}^{\alpha} u(x,+0)=\frac{\partial u(x,-0)}{\partial t}, 0<x<1 . \tag{4}
\end{equation*}
$$

The main result of this study is the following theorem.
Theorem. Let $f(x, t) \in C_{x, t}^{4,0}(\bar{\Omega}), \frac{\partial^{5} f(x, t)}{\partial x^{5}} \in L_{2}(\Omega)$,

$$
f(0, t)=f_{x x}(1, t)=f_{x x x}(0, t)=0, f_{x}(1, t)=f_{x}(0, t), f_{x x x}(1, t)=f_{x x x}(0, t),
$$

and $\Delta_{n}=\lambda_{n}^{2} \sin \lambda_{n}^{2} p+\cos \lambda_{n}^{2} p \neq 0$ at $n=1,2, \ldots$ Then the solution of Problem A exists and unique.

References

[1] Kilbas A. A., H. M. Srivastava, J. J. Trujillo, "Theory and applications of fractional differential equations North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.523 pp.

