Weighted multiplicative estimate for norm of discrete Hardy operator

Aigerim KALYBAY¹, Saltanat SHALGINBAYEVA²

 ¹ KIMEP University, Almaty, Kazakhstan E-mail: kalybay@kimep.kz
² Kazakh Ablai Khan University of International Relations and World Languages, Almaty, Kazakhstan E-mail: salta_sinar@mail.ru

Abstract: Let $f \ge 0$ be a sequence of real numbers $f = \{f_i\}_{i=1}^{\infty}$ with non-negative terms.

Let v > 0, $u \ge 0$, and $w \ge 0$ be weight sequences. Let A be a matrix operator in the form:

$$(Af)_i = \sum_{j=1}^i a_{i,j} f_j, \ i \ge 1,$$

where $a_{i,j} \ge 0$ for $i \ge j \ge 1$ and $a_{i,j} = 0$ for i < j.

We consider the following weighted multiplicative inequality:

(1)
$$||uPf||_q \le C ||vf||_p^{\alpha} ||wAf||_r^{1-\alpha}, f \ge 0, 0 \le \alpha \le 1,$$

where $(Pf)_i = \sum_{j=1}^{i} f_j$ is the discrete Hardy operator and $\|\cdot\|_q$ is the standard norm of the space l_q .

When $\alpha = 1$ inequality (1) is a weighted estimate of the discrete Hardy operator, which is well-studied for all values of the parameters $0 < p, q < \infty$ and has numerous applications (see [1,2]). Multiplicative inequalities are also of great importance and have applications to different problems of Analysis. Some of applications can be found in [3].

When $\alpha = 0$ from (1) we get the inequality that is of independent interest.

Keywords: multiplicative inequality, Hardy-type inequality, matrix operator, sequence

2010 Mathematics Subject Classification: 26D10, 26D15, 39B82

References

- [1] Hardy, G.H., Littlewood, J.E., Pólya G., "Inequalities", Cambridge Univ. Press, 1934.
- [2] Kufner, A., Maligranda, L., Persson, L.-E., "The Hardy inequality. About its history and some related results", *Vydavatelský servis*, Pilsen, 2007.
- [3] Magaril-Il'yaev, G.G., Tikhomirov, V.M., "Convex Analysis: Theory and Applications", American Mathematical Society, 2003.