Weighted additive estimate for norm of discrete Hardy operator

Aigerim KALYBAY¹, Saltanat SHALGINBAYEVA²

 ¹ KIMEP University, Almaty, Kazakhstan E-mail: kalybay@kimep.kz
² Kazakh Ablai Khan University of International Relations and World Languages, Almaty, Kazakhstan E-mail: salta_sinar@mail.ru

Abstract: Let $f \ge 0$ be a sequence of real numbers $f = \{f_i\}_{i=1}^{\infty}$ with non-negative terms.

Let v > 0, $u \ge 0$, and $w \ge 0$ be weight sequences. Let P be a discrete Hardy operator $(Pf)_i = \sum_{j=1}^i f_j$, and A be a matrix operator in the form $(Af)_i = \sum_{j=1}^i a_{i,j}f_j$, $i \ge 1$, where $a_{i,j} \ge 0$ for $i \ge j \ge 1$ and $a_{i,j} = 0$ for i < j.

We consider the following weighted additive estimate:

(1)
$$\|uPf\|_q \le C \left(\|vf\|_p + \|wAf\|_r\right), \ f \ge 0,$$

where $\|\cdot\|_q$ is the standard norm of the space l_q .

In papers [1–3] under some conditions on the elements $(a_{i,j})$ the authors have found necessary and sufficient conditions for the validity of the inequality:

 $||uAf||_q \le C \left(||vf||_p + ||wPf||_p \right), \ f \ge 0,$

where $1 < p, q < \infty$.

Moreover, continuous analogue of inequality (1) has been studied in paper [3] for $A \equiv P$, r = p and 1 .

Keywords: additive inequality, Hardy-type inequality, matrix operator, sequence

2010 Mathematics Subject Classification: 26D10, 26D15, 39B82

References

- Taspaganbetova, Z., Temirkhanova, A., "Boundedness and compactness of a class of matrix operators", *Math. Journal*, Vol.2, No.4, pp. 73–85, 2011.
- [2] Taspaganbetova, Z., Temirkhanova, A., "Boundedness of matrix operators in weighted spaces of sequences and their applications", Ann. Funct. Anal., Vol.1, No.2, pp. 114–127, 2011.
- [3] Temirkhanova, A., "An additive estimate of a class of matrix operators", Ph.D. thesis, Luleå University of Technology, Luleå, 2015.