On first eigenvalue of Laplace operator

Baltabek KANGUZHIN ¹, Dostilek DAUITBEK ²

Abstract: We consider a self-adjoint differential operator in a Hilbert space. Then the domain of the operator is changed by the perturbation of the boundary conditions so that a given neighborhood "there is no eigenvalues on neighborhood of zero" from the points of the spectrum of the perturbed operator. For the Sturm-Liouville operator on the segment and the Laplace operator on the square such a possibility is achieved through integral perturbations of boundary conditions. These statements are given with full proves and with possible extension. The G.G. Islamov's paper [1] solves the following problem. Suppose that the closed operator A of the Banach space X has eigenvalues in a "prohibited" area of Ω the complex plane. The requirement is for a K finite-dimensional V = A - K operator, wherein the operator will not have points in the spectrum in Ω area. Our main result is following theorem:

Theorem 1. If the parameter α chosen so, that inequality holds

(1)
$$(\lambda_2 - \lambda_1) \le \alpha \int_0^\pi \frac{\partial v_1(x_1, \pi)}{\partial x_2} dx_1,$$

the eigenvalues $\{\eta_k\}_{k=1}^{\infty}$ of the operator B_1 defined by the formula

 $\eta_k = \lambda_k$ when $k \ge 2$,

and η_1 is the only real root of the equation.

Keywords:Laplace operator, eigenfunction, eigenvalue.

2010 Mathematics Subject Classification: 35J05, 35J08, 35J25, 35P05

References

G.G. Islamov "Eksperemental'nye vozmuchenia zamknutyh operatorov", *Izv. vuzov Math.*, 33, No.1, pp. 35-41 (1989).