Solvability of a stationary problem of magnetohydrodynamics

Khonatbek KHOMPYSH¹, Sharypkhan SAKHAEV¹

¹ Al-Farabi Kazakh National University, Almaty, Kazakhstan E-mail: konat_k@mail.ru, sakhaev_sh@mail.ru

Abstract: This work is devoted to study the following stationary problem of magnetohydrodynamics consisting in finding the functions $\vec{v}(x)$, p(x), $\vec{H}(x)$ and $\vec{E}(x)$ in $\Omega \subset R^3$:

(1)
$$-\nu\Delta\vec{v} + (\vec{v}\cdot\nabla)\vec{v} - \frac{\mu}{\rho}\left(\vec{H}\cdot\nabla\right)\vec{H} + \frac{1}{\rho}\nabla\left(p(x) + \frac{\mu}{2}\left|\vec{H}\right|^2\right) = \vec{f}(x), \ x \in \Omega,$$

(2)
$$\operatorname{div}\vec{v}(x) = 0, \ x \in \Omega,$$

(3)
$$\operatorname{rot}\vec{H}(x) - \sigma\left(\vec{E}(x) + \mu\left[\vec{v}\times\vec{H}\right]\right) = \vec{j}(x), \ x\in\Omega,$$

(4)
$$div\mu \vec{H}(x) = 0, \ x \in \Omega,$$

(5)
$$rot\vec{E}(x) = 0, x \in \Omega,$$

(6)
$$\vec{v}(x)|_{S} = 0, \vec{E}_{\tau}(x)|_{S} = 0, \vec{H} \cdot \vec{n}|_{S} = 0.$$

Here \vec{n} is the unit outward normal to S, and $\vec{E}_{\tau} = \vec{E} - \vec{n} \left(\vec{n} \cdot \vec{E} \right)$. $\Omega \subset R^3$ is the bounded domain with smooth boundary S.

Using the results in [1]- [3], we prove unique solvability of (1)-(6) in Sobolev and Hölder spaces.

Keywords: magnetohydrodynamics, generalized solution, stationary problem

2010 Mathematics Subject Classification: 76W99, 35D30, 60G10

References

- Sakhaev, Sh.S., Solonnikov, V.A., "On Some Stationary Problems of Magnetohydrodynamics in Multy-Connected Domains", *Zap. Nauch. Sem. POMI*, Vol. 397, pp. 126–149, 2011.
- [2] Sakhaev, Sh.S., Khompysh, Kh., "On estimates of solutions of the linear stationary problem of magnetohydrodynamics problem in Sobolev spaces", Advancements in Mathematical Sciences, AIP Conference Proceedings 1676, pp. 020030-1–0200305, 2015.
- [3] Solonnikov, V.A., "Some Stationary Boundary-Value Problems of Magnetohydrodynamics", Trudy Math. Inst. Steklov, Vol. 59, pp. 5-36, 1960.