On a homogeneous parabolic problem in an infinite corner domain

Muvasharkhan JENALIYEV ${ }^{1}$, Murat RAMAZANOV ${ }^{2}$
${ }^{1}$ Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan E-mail: muvasharkhan@gmail.com
${ }^{2}$ Buketov Karaganda Stated University, Karaganda, Kazakhstan
E-mail: ramamur@mail.ru

Abstract: It is considered the homogeneous boundary problem

$$
\begin{gather*}
\frac{\partial u(x, t)}{\partial t}-a^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}=0,\{x, t\} \in G=\{x, t: 0<x<t, t>0\} \tag{1}\\
\left.\frac{\partial u(x, t)}{\partial x}\right|_{x=0}=0,\left.\frac{\partial u(x, t)}{\partial x}\right|_{x=t}+\frac{d u \tilde{(t)}}{d t}=0 \tag{2}
\end{gather*}
$$

where $\tilde{u}(t)=u(t, t)$.
Note that problem (1)-(2) is homogeneous case of the problem, studied in [1], which stated that the case of non-homogeneous boundary value problem "... it appears to be useful in the study of some free boundary value problems. "In the paper [1] was obtain a theorem on the unique solvability of the nonhomogeneous boundary value problem in weighted Holder spaces.

In this paper, we set in class of essentially bounded functions with a given weight the existence of a nontrivial solution for a constant factor and a constant term. We introduce the class as follows:

$$
\left(x+t^{1 / 2}\right)^{-1} u(x, t) \in L_{\infty}(G) \text {, i.e. } u(x, t) \in L_{\infty}\left(G ;\left(x+t^{1 / 2}\right)^{-1}\right) .
$$

Theorem 1. The boundary value problem (1)-(2) has a nontrivial solution $u(x, t)=C_{2} \tilde{u}(x, t)+C_{1}$, where $\tilde{u}(x, t) \in L_{\infty}\left(G ;(x+\sqrt{t})^{-1}\right), C_{1}, C_{2}=$ const.

THEOREM 2. In the class of functions $L_{\infty}\left(G ;\left[x^{1+\alpha}+t^{(1+\alpha) / 2}\right]^{-1}\right)$ the boundary value problem (1)-(2) has only the trivial solution $u(x, t) \equiv 0$.

Keywords: parabolic equation, boundary value problem, integral equation
2010 Mathematics Subject Classification: 94B05, 94B15

References

[1] V. A. Solonnikov, and A. Fasano, "One-dimensional parabolic problem arising in the study of some free boundary problems", Zapiski nauchnykh seminarov POMI (in Russian), Vol. 269, pp.322-338, 2000.

