Additive and multiplicative weighted estimates of intermediate integral operator

Ryskul OINAROV ¹

¹ L.N. Gumilyov Eurasian National University, Astana, Kazakhstan E-mail: o_ryskul@mail.ru

Abstract: The work is done together with A.A. Kalybay.

We consider the inequalities

(1)
$$||uK_{\beta}f||_{q} \leq C \left(||\rho f||_{p} + ||vKf||_{r} \right), \quad f \geq 0,$$

(2)
$$||uK_{\beta}f||_{q} \leq C||\rho f||_{p}^{\alpha}||vKf||_{r}^{1-\alpha}, \quad f \geq 0,$$

where $0 \le \alpha, \beta \le 1$ and $\|\cdot\|_p$ is the standard norm of the space $L_p(0, \infty)$. Moreover, K and K_β are integral operators of the form

$$Kf(x) = \int_{0}^{\infty} K(x,s)f(s)ds, \quad K_{\beta}f(x) = \int_{0}^{\infty} K^{\beta}(x,s)f(s)ds$$

with the kernel $K(\cdot,\cdot) \geq 0$ satisfying the condition

$$\exists D \ge 1 : D^{-1} \bigg(K(x,t) + K(t,s) \bigg) \le K(x,s) \le D \bigg(K(x,t) + K(t,s) \bigg)$$

for $x \ge t \ge s > 0$.

We give necessary and sufficient conditions for the validity of inequalities (??) and (??) for $1 \le \max\{p,r\} \le q \le \infty$ and $\frac{\alpha}{p} + \frac{1-\alpha}{r} \ge \frac{1}{q}$, respectively.

As an application, we obtain criteria for the inequalities

$$||uf^{(k)}||_q \le C(||\rho f^{(n)}||_p + ||vf||_r)$$

and

$$||uf^{(k)}||_q \le C||\rho f^{(n)}||_p^{\alpha}||vf||_r^{1-\alpha}$$

to hold on the class of *n*-convex functions absolutely monotone on the interval $(0, \infty)$; in particular, when (n = 2) on the class of convex and twice differentiable functions, where $0 \le k < n$.

Keywords: multiplicative inequality, additive inequality, integral operator, kernel

2010 Mathematics Subject Classification: 26D10, 39B62