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Abstract: It is well known that for a Hausdorff topological group X, the
limits of convergent sequences in X define a function denoted by lim from the
set of all convergent sequences in X to X. This notion has been modified
in [4] by Connor and Grosse-Erdmann for real functions by replacing lim with
an arbitrary linear functional G defined on a linear subspace of the vector
space of all real sequences and Çakallı [2] has introduced the G-sequentially
connectedness for topological groups.

In [6] Orzech introduced a certain algebraic category C called category of
groups with operations including groups, rings without identity, R-modules,
Lie algebras, Jordan algebras, and many others.

In this work we present some results about G-sequential continuity, G-
sequential connectedness and fundamental system of G-sequentially open neigh-
bourhoods for topological groups with operations.
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