G-Sequentially connectedness for topological groups with operations

Osman MUCUK ${ }^{1}$, Huseyin CAKALLI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Erciyes University, Kayseri, Turkey
E-mail: mucuk@erciyes.edu.tr
${ }^{2}$ Maltepe University, Faculty of Arts and Sciences, Istanbul, Turkey
E-mail: hcakalli@gmail.com

Abstract

It is well known that for a Hausdorff topological group X, the limits of convergent sequences in X define a function denoted by lim from the set of all convergent sequences in X to X. This notion has been modified in [4] by Connor and Grosse-Erdmann for real functions by replacing lim with an arbitrary linear functional G defined on a linear subspace of the vector space of all real sequences and Çakallı [2] has introduced the G-sequentially connectedness for topological groups.

In [6] Orzech introduced a certain algebraic category C called category of groups with operations including groups, rings without identity, R-modules, Lie algebras, Jordan algebras, and many others.

In this work we present some results about G-sequential continuity, G sequential connectedness and fundamental system of G-sequentially open neighbourhoods for topological groups with operations.

Keywords: Sequences, G-sequentially continuity, G-sequentially connectedness, topological group with operations

2010 Mathematics Subject Classification: 40J05, 22A05, 22Axx

References

[1] H. Çakallı, On G-continuity, Comput. Math. Appl., Vol.61, No.2, pp. 313-318, 2011.
[2] H. Çakall, Sequential definitions of connectedness, Appl. Math. Lett., Vol.25, No.3, pp.461-465, 2012.
[3] H. Çakall, and O. Mucuk, On connectedness via a sequential method, Revista de la Unión Matemática Argentina, Vol.54, No.2, pp.101-109, 2013.
[4] J. Connor, K.-G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math., Vol.33, No.1, pp.93-121, 2003.
[5] Mucuk, O. and Şahan, T., On G-sequential Continuity, Filomat Vol.28, No.6, pp.11811189, 2014.
[6] Orzech, G., Obstruction theory in algebraic categories I and II, J. Pure. Appl. Algebra, Vol.2, pp.287-314 and 315-340, 1972.

