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Abstract: We consider the operator Iq;n the following form

Iq;nf(x) =
1

�q(n)

1Z
0

X(0;x](s)Kn�1(x; s)f(s)dqs;

which is de�ned for all x > 0 [1]. where Kn�1(x; s) = (x� qs)n�1q .

Then the q-analog of the two-weighted inequality for the operator Iq;n of the
form

(1)

0@ 1Z
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ur(x) (Iq;nf(x))
r dqx
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� C

0@ 1Z
0

vp(x)fp(x)dqx
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p

:

which has several applications in various �elds of science. Where C a positive
constants independent of f and u(�); v(�) are positive real valued functions on
(0;1), i.e. weight functions.
Theorem. Let 1 < r < p < 1. Then the inequality (1) holds if and only

if Qn�1 <1 holds, where

Qn�1m =

8><>:
1Z
0

0@ 1Z
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X(0;z](s)Kp0

m(z; s)v
�p0(s)dqs
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0

X[z;1)(x)Kr
n�m�1(x; z)u

r(x)dqx
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m(z; s)v
�p0(s)dqs
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pr

:

Moreover, Qn�1 � C, C is the best constant in (1).
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