Hardy-type inequality for a fractional integral operator in q-analysis

Shaimardan, S

Faculty of Mathematics and Mechanics, L.N. Gumilyov Eurasian National University, Ȧstana, Kazakhstan E-mail: email@address

Abstract: We consider the operator $I_{q, n}$ the following form

$$
I_{q, n} f(x)=\frac{1}{\Gamma_{q}(n)} \int_{0}^{\infty} \mathcal{X}_{(0, x]}(s) K_{n-1}(x, s) f(s) d_{q} s
$$

which is defined for all $x>0[1]$. where $K_{n-1}(x, s)=(x-q s)_{q}^{n-1}$.
Then the q-analog of the two-weighted inequality for the operator $I_{q, n}$ of the form

$$
\begin{equation*}
\left(\int_{0}^{\infty} u^{r}(x)\left(I_{q, n} f(x)\right)^{r} d_{q} x\right)^{\frac{1}{r}} \leq C\left(\int_{0}^{\infty} v^{p}(x) f^{p}(x) d_{q} x\right)^{\frac{1}{p}} \tag{1}
\end{equation*}
$$

which has several applications in various fields of science. Where C a positive constants independent of f and $u(\cdot), v(\cdot)$ are positive real valued functions on $(0, \infty)$, i.e. weight functions.

Theorem. Let $1<r<p<\infty$. Then the inequality (1) holds if and only if $Q_{n-1}<\infty$ holds, where

$$
\begin{aligned}
Q_{m}^{n-1} & =\left\{\int_{0}^{\infty}\left(\int_{0}^{\infty} \mathcal{X}_{(0, z]}(s) K_{m}^{p^{\prime}}(z, s) v^{-p^{\prime}}(s) d_{q} s\right)^{\frac{p(r-1)}{p-r}}\right. \\
& \times\left(\int_{0}^{\infty} \mathcal{X}_{[z, \infty)}(x) K_{n-m-1}^{r}(x, z) u^{r}(x) d_{q} x\right)^{\frac{p}{p-r}} \\
& \left.\times D_{q}\left(\int_{0}^{\infty} \mathcal{X}_{(0, z]}(s) K_{m}^{p^{\prime}}(z, s) v^{-p^{\prime}}(s) d_{q} s\right)\right\}^{\frac{p-r}{p r}}
\end{aligned}
$$

Moreover, $Q_{n-1} \approx C, C$ is the best constant in (1).
Keywords: inequalities; Hardy-type inequalities, integral operator; q-calculus; q-integral

References

[1] Al-Salam, W.A., "Some fractional q-integrals and q-derivatives", Proc. Edinb. Math. Soc, Val. 15, pp.135-140, (1966/1967).

