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Abstract: The investigations of the distributions for the processes of semi-
Markov random process have an important value in the random process theory.
The purpose of the present article is to find the Laplace transforms for Erlangen
distribution of the semi-Markov random processes with positive tendency and
negative jumps. Let’s the sequence {&, (x}x>1 be given on the probability
space {Q, S, P(+)}, where the random variables & and (x, k > 1 independent
and identically distributed. Using these random variables we construct the
following semi-markov random process:

X(t)=z4+t -0 Gt a<t<SF & k=1,2,..., t,2>0.

X (t) process is called as the semi-markov random process with positive ten-
dency and negative jumps. Also let us denotethe random variable 70 the first
falling time of the process into zero-level, as 70 = min{t : X (¢) < 0}. We need
to find the Laplace transform for distribution of random variable 70. Let’s as-
sume that the random variables & and (; have an Erlangen distribution of
third construction with the parameters A and pu, respectively. According to
total probability formula, we can write the following integral equation for the
random variable 70 :
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In this case, we get the following fourth order differential equation:
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Then the general solution of this differential equation will be as follows:
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This expression is the Laplace transform for relative distribution of random
variable 70. Laplace transform for non-relative distribution of 70 will be
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Therefore, we will get the following characteristics for Am > p :
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