Approximation in time of fractional equations

Sergey Piskarev

Lomonosov Moscow State University, Moscow, Russia E-mail: piskarev@gmail.com

Abstract: In this talk we continue our investigations [1] on discretization of differential equations of fractional order in time.

Recently, in [2] and [3] were considered the relation between well-posed Cauchy problems

$$v'(t) = A^{l}v(t) + g(t), t > 0, v(0) = u^{0},$$

and

$$(\mathbf{D}_t^{1/l}u)(t) = Au(t), t > 0, u(0) = u^0.$$

Moreover, they have shown that for such kind problems with the operator A which generates analytic C_0 -semigroup one has $v(t) \equiv u(t)$ for any t > 0 as soon as l = 2 and special choice of g(t).

In this talk, we would like to use such kind of relations for discretization of differential equations of fractional order in abstact spaces.

Acknowledgement.

Research was partially supported by grant of RFBR 15-01-00026-a.

Keywords: fractional differential equations, approximation

2010 Mathematics Subject Classification: 65N40, 35-99

References

- Liu, R., Li, M., Pastor, J. and Piskarev, S., " On the approximation of fractional resolution families." *Differential Equations* 50 (7), pp. 927-937, 2014.
- [2] Keyantuo, V., Lizama, C., "On a connection between powers of operators and fractional Cauchy problems." J. Evol. Equ. 12, No. 2, pp. 245-265, 2012.
- [3] Li, M., Chuang, Ch., Li, Fu-Bo., "On fractional powers of generators of fractional resolvent families." J. Funct. Anal. 259, No. 10, pp. 2702-2726, 2010.