On a method of finding a solution of semi-periodic boundary value problem for hyperbolic equations

Nurgul ORUMBAYEVA ${ }^{1,2}$, Beybitgul SHAYAKMETOVA ${ }^{3}$
${ }^{1}$ Institute of Applied Mathematics, Karaganda, Kazakhstan
${ }^{2}$ Department of Mathematics, Karaganda State University n.a. E.A. Buketov, Karaganda, Kazakhstan
E-mail: orumbayevan@mail.ru
${ }^{3}$ Department of Mathematics, Karaganda State University n.a. E.A. Buketov, Karaganda, Kazakhstan
E-mail: kazahzavod@mail.ru

$$
\begin{aligned}
& \text { Abstract: In this paper we investigate the floor semi-periodic boundary value } \\
& \text { problem for a system of hyperbolic equations with mixed derivative. An algo- } \\
& \text { rithm for finding an approximate solution of this problem. } \\
& \text { In this paper, a semi-periodic boundary value problem for a system of linear } \\
& \text { hyperbolic equations is considered: } \\
& \qquad \begin{array}{r}
\frac{\partial^{2} u}{\partial x \partial t}=A(x, t) \frac{\partial u}{\partial x}+C(x, t) u+f(x, t), \quad(x, t) \in \bar{\Omega}=[0, \omega] \times[0, T], \\
\\
u(0, t)=\psi(t), \quad u(x, 0)=u(x, T), \quad t \in[0, T], \in[0, \omega],
\end{array}
\end{aligned}
$$

where $A(x, t), C(x, t)$ matrix of $(n \times n)$ order, $f(x, t) n$-vector-function in continuous $\bar{\Omega}, n$-vector-function $\psi(t)$ continuously-differentiable in $[0, T]$. For her study, the interval $[0, \omega]$ is divided into M parts, and parameterization method is applied for each area. The proposed method for finding approximate solutions of semi-periodic boundary value problem for a system hyperbolic equations is illustrated by an example.

Keywords: Hyperbolic equations, decomposition, algorithm, the boundary value problem

2010 Mathematics Subject Classification: 35K20, 44A10, 45D05, 35L20

References

[1] Assanova, A.T., Dzhumabaev, D.S., "Correct solvability of nonlocal boundary value problems for systems of hyperbolic equations", Differential equations, Vol. 41, No. 3, pp.337-346, 2005.
[2] Orumbayeva, N.T., "On an algorithm of finding periodical boundary value problem for system of the quasi-linear of hyperbolic equations", Siberian Electronic Mathematical Reports, Vol.10, pp. 464-474, 2013.
[3] Dzhumabaev, D.S., "Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation", Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, Vol. 29, No. 1, pp. 50-66, 1989.

