A generalized Banach contraction principle on cone pentagonal metric spaces over Banach algebras

Abba Auwalu ${ }^{1}$, Evren Hinçal ${ }^{2}$
${ }^{1}$ Department of Mathematics
Near East University, Nicosia-TRNC, Mersin 10, Turkey
abba.auwalu@neu.edu.tr, abbaauwalu@yahoo.com
${ }^{2}$ Department of Mathematics
Near East University, Nicosia-TRNC, Mersin 10, Turkey
evren.hincal@neu.edu.tr, evrenhincal@yahoo.co.uk

Abstract

In this paper, we introduce the concept of cone pentagonal metric spaces over Banach algebras as a generalization of metric space and many of its generalization such as; cone metric space [1,2], cone rectangular metric space [3], and cone pentagonal metric space [4]. Furthermore, we prove a generalized Banach contraction principle in such a space as follows:

Theorem 0.1. Let (\mathcal{X}, d) be a complete cone pentagonal metric space over Banach algebra \mathcal{B} and S be a non normal solid cone in \mathcal{B}. Suppose $T: \mathcal{X} \rightarrow \mathcal{X}$ is a mapping that satisfies the following condition:

$$
d(T x, T y) \preccurlyeq k d(x, y) \text { for all } x, y \in \mathcal{X},
$$

where $k \in S$ is a generalized Lipschitz constant such that the spectral radius $\delta(k)<1$. Then T has a unique fixed point x^{*} in \mathcal{X}. Moreover, for any $x \in \mathcal{X}$, the iterative sequence $\left\{T^{i} x\right\}(i \in \mathbb{N})$ converges to x^{*}.

Keywords: cone pentagonal metric spaces, Banach algebras, c-sequence, contraction mapping principle, fixed point.

2010 Mathematics Subject Classification: 47H10, 54H25

References

[1] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, vol. 332, no. 2, 14681476, 2007.
[2] H. Liu, S. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory and Applications, vol. 2013, no. 320, 1-10, 2013.
[3] A. Azam, M. Arshad, I. Beg, Banach contraction principle on cone rectangular metric spaces, Applicable Analysis and Discrete Mathematics, vol. 3, no. 2, 236-241, 2009.
[4] M. Garg, S. Agarwal, Banach contraction principle on cone pentagonal metric space, Journal of Advanced Studies in Topology, vol. 3, no. 1, 12-18, 2012.

