A third order of accuracy difference scheme for Bitsadze-Samarskii type multi-point overdetermined elliptic problem

Charyyar Ashyralyyev^{1,2}, Gulzıpa Akyüz^{1,3}

¹Department of Mathematical Engineering, Gumushane University, Gumushane, Turkey

E-mail: ²charyyar@qumushane.edu.tr, ³qulzipaakyuz@qmail.com

Abstract: Let us $k_i, \lambda_i, 1 \leq i \leq q; \lambda_0, T, \alpha$ are known nonnegative real numbers such that

(1)
$$\sum_{i=1}^{q} k_i = 1, k_i \ge 0, i = 1, \dots, q, \\ 0 < \lambda_1 < \lambda_2 < \dots < \lambda_q < T, \lambda_0 \in (0, T), 0 < \alpha < 1.$$

Consider the following multipoint multidimensional elliptic problem with overdetermination

(2)
$$\begin{cases} -v_{tt}(t,x) - \sum_{r=1}^{n} (a_r(x)v_{x_r}(t,x))_{x_r} + \sigma v(x) = g(t,x) + p(x), \\ x = (x_1, \dots, x_n) \in \Omega, \ 0 < t < T, \\ v(0,x) = \phi(x), v(T,x) - \sum_{i=1}^{q} k_i v(\lambda_i, x) = \eta(x), \\ v(\lambda_0, x) = \zeta(x), x \in \overline{\Omega}, \ v(t,x) = 0, x \in S, \end{cases}$$

where $\Omega = (0, \ell)^n$ is the open cube in R_n with boundary S, $\overline{\Omega} = \Omega \cup S$ and nonnegative real numbers σ , λ_0 , λ_i , k_i , $1 \leq i \leq q$ are known, smooth functions a_r, ϕ, η, ζ , and f are given on Ω , $a_r(x) > 0$, $\forall x \in \Omega$. In [1], well posedness of problem 2 was established. A first and a second order difference schemes for its approximately solution were constructed. In [2], overdetermined problem for the multi-dimensional elliptic equation with Neumann boundary condition was investigated. The papers [3–5] are devoted to high order approximations of overdetermined elliptic problems without nonlocal boundary conditions.

In the present work, we construct a third order of accuracy difference scheme for problem 2 and establish stability, almost coercive stability and coercive stability estimates for its solution.

Keywords: nonlocal boundary condition, inverse elliptic problem, well-posedness, stability, coercive stability, overdetermination.

2010 Mathematics Subject Classification: 35N25, 35J67

References

 C. Ashyralyyev, G. Akyuz, Stability estimates for solution of Bitsadze-Samarskii type inverse elliptic problem with Dirichlet conditions, AIP Conference Proceedings, vo. 1759 (020129), 2016.

- [2] C. Ashyralyyev, G. Akyuz, M. Dedeturk, Approximate solution for an inverse problem of multidimensional elliptic equation with multipoint nonlocal and Neumann boundary conditions, Electronic Jourlal of Differential Equations, vol. 2017, no 197, 1-16, 2017.
- [3] C. Ashyralyyev, High order approximation of the inverse elliptic problem with Dirichlet-Neumann Conditions, Filomat, vol. 28, no 5, 947–962, 2014.
- [4] C. Ashyralyyev, High order of accuracy difference schemes for the inverse elliptic problem with Dirichlet condition, Boundary Value Problems, vol. 2014, no 5, 1–23, 2014.
- [5] C. Ashyralyyev, A fourth order approximation of the Neumann type overdetermined elliptic problem, Filomat, vol. 31, no 4, 967-980, 2017.