Principle of Independence of Continuation of Functions k- Significant Logic From Coding

Anvar Kabulov¹, Ibrokhimali Normatov², Ilyos Kalandarov³

¹ National University of Uzbekistan info-efu@rambler.ru

² Tashkent University of Information Technologies named after Muhammed

Al-Khwarizmi, Uzbekistan ibragim normatov@mail.ru

³ Navoi State Mining Institute, Uzbekistan ilyos1987@mail.ru

Abstract: In this paper we consider not everywhere defined functions of k-valued logic. The problem of logical continuation of functions of k-valued logic in the class of disjunctive normal forms is investigated. We prove a theorem on the invariant extension of functions of k-valued logic in the class of disjunctive norms, which does not depend on the accepted coding. An algorithm is constructed for constructing a set of invariant points that are independent of the received encoding.

Keywords: Encoding, logic, conjunction, disjunction, sets, quasi-Boolean invariant, synthesis, equivalent

We consider the function $F(x_1, x_2, ..., x_n)$ k - valued logic, given on $M \subseteq E_k^n$:

$$F(\tilde{x}) = \gamma_j$$
, if $\tilde{x} \in M_j$, $(j = \overline{0, k-1})$,

where $M = \bigcup_{i=0}^{m} M_i$ and $M_i \cap M_j = \emptyset$ for $i \neq j$. We denote by $\{\pi\}$ the set of all permutations of the set $\{0, 1, \dots, k-1\}$: $\pi = (i_0, i_1, \dots, i_{k-1})$. The functions $F_{\pi}(\tilde{x}) = i_j$, if $\tilde{x} \in M_j$, $(j = \overline{0, k-1})$, we call π is a permutation of $F(\tilde{x})$. We will say that a point $\tilde{\alpha} \in E_k^n \setminus M$ preserves the encoding (code) of a set $M_j \subseteq M, \ j = \overline{0, k-1}$ with respect to a permutation pi, if $\mathfrak{M}_{\Sigma TF}(\tilde{\alpha}) = j$ and $\mathfrak{M}_{\Sigma TF_{\pi}}(\tilde{\alpha}) = i_j$. A point $\tilde{\alpha} \in E_k^n \setminus M$ is called a point that preserves the encoding of the set M_j , if it preserves the encoding M_j with respect to any permutation $\pi \in \{\pi\}$. Let $\mathfrak{M} = \bigvee_{\pi:\pi \in (\pi)} \mathfrak{M}_{\Sigma TF_{\pi}}$.

Theorem. The point $\tilde{\alpha} \in E_k^n \setminus \bigcup_{i=0}^{k-1} M_i$ preserves the code of the set M_j , then and only if, when:

1) in DNF \mathfrak{M} there is an EK \mathfrak{A} such that $N_{\mathfrak{A}} \cap M_j \neq \emptyset$, $\tilde{\alpha} \in N_{\mathfrak{A}}$, $N_{\mathfrak{A}} \cap M_i = \emptyset$, where (i = 0, ..., j - 1, j + 1, ..., k - 1);

2) each interval $N_{\mathfrak{A}}$ where EK \mathfrak{A} belongs to the set \mathfrak{M} intersects with M_i , $(i \neq j)$ and contains the point M_j .

References

 Yu.I. Zhuravlev, Algorithms for constructing minimal disjunctive normal forms for a function of the algebra of logic, Discrete mathematics and mathematical problems of cybernetics, vol.1, Moscow: Nauka, 1974, p.67-98..