Singularly perturbed first-order equations in complex domains that lose their uniqueness under degeneracy

Kurmanbek Alybaev¹, Aitbu Murzabaeva²

¹ Jalal-Abad State University, Kyrgyzstan

² Osh Technological University, Kyrgyzstan alybaevkurmanbek@rambler.ru, aytbu.murzabaerva@mail.ru

Abstract: In this paper we consider a singularly perturbed first-order equation in complex domains, the degenerate equation of which has several isolated solutions. Cases when degenerate equations have unique solutions are considered in [1-2].

Let consider the equation:

(1)
$$\varepsilon z'(t,\varepsilon) = f(t,z(t,\varepsilon)),$$

where $\varepsilon > 0$ is a small parameter, C is a set of complex numbers, Ω is a simply connected domain, with the initial condition $z(t_0, \varepsilon) = z^0$ where $t_0 \in \Omega \subset C$ and is internal point. Constants independent of ε are denoted by $M_0, M_1, M_2...$

For $\varepsilon = 0$, from (1) we get the degenerate equation

(2)
$$f(t,\xi,(t)) = 0,$$

Let the equation (2) has solutions $\xi_j(t), j = 1, 2, n$.

Definition 1. If $\forall (k \neq m) \land \forall t \in \Omega(|\xi_k(t) - \xi_m(t)| > M_0)$, then $\xi_k(t)$ and $\xi_m(t)$ are said isolated solutions in Ω . U1. Let f(t, z) the analytic function with respect to the variables (t, z) in some domain D the variables (t, z).

Definition 2. If: $1, \forall t \in \Omega_j \subset \Omega$ there exists $z(t, \varepsilon)$ the solution of problem (1)-(2) $2, \forall t \in \Omega_j (\lim_{\varepsilon \to 0} z(t, \varepsilon) = \xi_j(t))$ then the domain Ω_j are said the domain of attraction of the solution $\xi_j(t)$.

Theorem. Suppose that the condition U1 are satisfied. Then for each $\xi_j(t)$ there exists:

1. The solution $z_j(t,\varepsilon)$ of equation(1)satisfying condition $z_j(t_0,\varepsilon) = z_j^0$, $|z_j^0 - \xi_j(t_0)| \le M_1 \varepsilon$.

2. The domain $\Omega_j \subset \Omega$ and $\forall t \in \Omega_j(z_j(t,\varepsilon) \to \xi_j(t)by\varepsilon)$

Keywords: singularly perturbed equations, degenerate equation, analytical

functions, isolated solutions, domain of attraction **2010 Mathematics Subject Classification:** 35J05,35J08, 35J25

References

 K.S. Alybaev. Method of level lines for investigating singularly perturbed equations under violation of the stability condition / [Text] / .. Alybaev // Bulletin of KGNU. Series 3, Issue 6. Bishkek, 2001. 190-200.