Singularly perturbed first-order equations in complex domains that lose their uniqueness under degeneracy

Kurmanbek Alybaev ${ }^{1}$, Aitbu Murzabaeva ${ }^{2}$
${ }^{1}$ Jalal-Abad State University,Kyrgyzstan
${ }^{2}$ Osh Technological University, Kyrgyzstan alybaevkurmanbek@rambler.ru, aytbu.murzabaerva@mail.ru

Abstract: In this paper we consider a singularly perturbed first-order equation in complex domains, the degenerate equation of which has several isolated solutions. Cases when degenerate equations have unique solutions are considered in [1-2].
Let consider the equation:

$$
\begin{equation*}
\varepsilon z^{\prime}(t, \varepsilon)=f(t, z(t, \varepsilon)) \text {, } \tag{1}
\end{equation*}
$$

where $\varepsilon>0$ is a small parameter, C is a set of complex numbers, Ω is a simply connected domain, with the initial condition $z\left(t_{0}, \varepsilon\right)=z^{0}$ where $t_{0} \in \Omega \subset C$ and is internal point. Constants independent of ε are denoted by $M_{0}, M_{1}, M_{2} \ldots$

For $\varepsilon=0$, from (1) we get the degenerate equation

$$
\begin{equation*}
f(t, \xi,(t))=0, \tag{2}
\end{equation*}
$$

Let the equation (2) has solutions $\xi_{j}(t), j=1,2,, n$.
Definition 1. If $\forall(k \neq m) \wedge \forall t \in \Omega\left(\left|\xi_{k}(t)-\xi_{m}(t)\right|>M_{0}\right)$, then $\xi_{k}(t)$ and $\xi_{m}(t)$ are said isolated solutions in Ω. U1. Let $f(t, z)$ the analytic function with respect to the variables (t, z) in some domain D the variables (t, z).
Definition 2. If:1. $\forall t \in \Omega_{j} \subset \Omega$ there exists $z(t, \varepsilon)$ the solution of problem (1)(2) $2 . \forall t \in \Omega_{j}\left(\lim _{\varepsilon \rightarrow 0} z(t, \varepsilon)=\xi_{j}(t)\right)$ then the domain Ω_{j} are said the domain of attraction of the solution $\xi_{j}(t)$.
Theorem. Suppose that the condition U1 are satisfied. Then for each $\xi_{j}(t)$ there exists:

1. The solution $z_{j}(t, \varepsilon)$ of equation(1)satisfying condition $z_{j}\left(t_{0}, \varepsilon\right)=z_{j}^{0}$, $z_{j}^{0}-\xi_{j}\left(t_{0}\right) \mid \leq M_{1} \varepsilon$.
2. The domain $\Omega_{j} \subset \Omega$ and $\forall t \in \Omega_{j}\left(z_{j}(t, \varepsilon) \rightarrow \xi_{j}(t) b y \varepsilon\right)$

Keywords: singularly perturbed equations, degenerate equation, analytical functions, isolated solutions, domain of attraction
2010 Mathematics Subject Classification: 35J05,35J08, 35J25

References

[1] K.S. Alybaev. Method of level lines for investigating singularly perturbed equations under violation of the stability condition / [Text] / .. Alybaev // Bulletin of KGNU. Series 3, Issue 6. Bishkek, 2001. 190-200.

