Compactness Of The Commutators Of Riesz Potential On Global Morrey-type Space.

Bokayev Nurzhan¹, Matin Dauren¹, Baituyakova Zhuldyz¹

¹L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

 $bokayev 2011 @yandex.ru, \ d.matin@mail.ru, \ baituyakova.zhzh@yandex.ru$

Abstract: In this paper we obtain the sufficient conditions of compactness of the commutator for the Riesz potential $[b, I_{\alpha}]$ in global Morrey-type spaces $GM_{p\theta}^{w}$.

Let $1 \leq p \leq \infty$, w be a measurable non-negative function on $(0, \infty)$. The Global Morrey-type space $GM_{p\theta}^w \equiv GM_{p\theta}^w(\mathbb{R}^n)$ is defined as the set of all functions $f \in L_p^{loc}(\mathbb{R}^n)$ with finite quasi-norm $\|f\|_{GM_{p\theta}^w} \equiv \sup_{x \in \mathbb{R}^n} \|w(r)\|f\|_{L_p(B(x,r))}\|_{L_{\theta}(0,\infty)}$, where B(t,r) the ball with center at the point t and of radius r.

For the function $b \in L_{loc}(\mathbb{R}^n)$ we denote by M_b the multiplication operator $M_b f = bf$, where f is a measurable function. Then the commutator for the Riesz potential I_{α} and the operator M_b is defined by the equality $[b, I_{\alpha}] = M_b I_{\alpha} - I_{\alpha} M_b = C_{n,\alpha} \int_{\mathbb{R}^n} \frac{[b(x) - b(y)]f(y)}{|x-y|^{n-\alpha}} dy$. It is said that the function $b(x) \in L_{\infty}(\mathbb{R}^n)$ belongs to the space $BMO(\mathbb{R}^n)$ if $\|b\|_* = \sup_{Q \subset \mathbb{R}^n} \frac{1}{|Q|} \int_Q |b(x) - b_Q| dx = \sup_{Q \in \mathbb{R}^n} M(b, Q) < \infty$, where Q - cub \mathbb{R}^n and $b_Q = \frac{1}{|Q|} \int_{\mathbb{R}^n} f(y) dy$.

We denote by $VMO(\mathbb{R}^n)$ the BMO -closure of the space $C_0^{\infty}(\mathbb{R}^n)$, where $C_0^{\infty}(\mathbb{R}^n)$ the set of all functions in $C^{\infty}(\mathbb{R}^n)$ with compact support.

Theorem 2. Let $0 < \alpha < n(1-\frac{1}{q}), 1 \le p_1 < p_2 < \infty, \alpha = n(\frac{1}{p_1} - \frac{1}{p_2}), \text{ or } 1 \le p_1 < \infty, 1 \le p_2 < \infty \text{ and } n(\frac{1}{p_1} - \frac{1}{p_2}) < \alpha < \frac{n}{p_1}, \alpha < n(1-\frac{1}{p_2}), 0 < \theta_1 \le \theta_2 \le \infty, \theta_1 \le 1, w_1 \in \Omega_{p_1\theta_1}, w_2 \in \Omega_{p_2\theta_2}, \text{ and let } \left\| w_2(r) \frac{\frac{r^1}{p_2}}{(t+r)^{\frac{n}{p_1}-\alpha}} \right\|_{L_{\theta_2(0,\infty)}} \le c \|w_1(r)\|_{L_{\theta_1(t,\infty)}} \text{ for all } t > 0, \text{ where } c > 0 \text{ not depend on } t, \text{ and } b \in VMO(\mathbb{R}^n).$ In addition, let the commutator $[b, I_\alpha]$ bounded from $GM_{p_1\theta_1}^{w_1}$ to $GM_{p_2\theta_2}^{w_2}$. More over, let $\|[b, I_\alpha]\|_{GM_{p_2\theta_2}^{w_2}} \le \|b\|_* \|f\|_{GM_{p_1\theta_1}^{w_1}}$ Then the commutator $[b, I_\alpha]$ is a compact operator from $GM_{p_1\theta_1}^{w_1}$ to $GM_{p_2\theta_2}^{w_2}$

Keywords: Compactness, Commutators, Riesz Potential, Global Morreytype Space

2010 Mathematics Subject Classification: 35Q79, 35K05, 35K20