
Degenerate operators for ordinary
di¤erential equations

Magzhan Biyar

Department of Mathematics, Nazarbayev University, Astana, Kazakhstan
magzhan.biyarov@nu.edu.kz

Abstract: We consider the spectral problem for operators generated by or-
dinary di¤erential equations. A degenerate operator means an operator whose
point spectrum �lls the whole complex plane, or a resolvent set �lls the whole
complex plane.

Conditions are found for the coe¢ cients of the general di¤erential equation
for which the corresponding operator is degenerate.

Theorem. Let the operator L generated in L2(0; 1) by the di¤erential expres-
sion l(y) = y(n) +

Pn
j=1 pj(x)y

(n�j); and the boundary conditions Uj(y) =

y(j�1)(0) � � � �(j�1)2 y(j�1)(1) = 0; j = 1; 2; : : : ; n, where �k = ei
2�(k�1)

n ; k =
1; 2; : : : ; n, being the n-th roots of unity with �1 = 1. If the condition

pk(x) = �
k
2pk(1 + �2x); k = 1; 2; : : : ; n; 0 � x � 1;

is satis�ed, then the operator L is degenerate, that is, the characteristic deter-
minant �L(�) � const. Furthermore, �L(�) = 1 � �n, and if �n 6= 1, then
L�1 is a Volterra operator; if �n = 1, then �(L) = ? and �(L) = C.
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