Generalized three-dimensional singular integral equation by tube domain

Nusrat Rajabov

Research Institute of the Tajik National University, Tajikistan nusrat38@mail.ru

Abstract: In this work, we investigate one class of three- dimensional complex integral equation by tube domains, ave in lower basis and lateral surface and may have singularity.

Let Ω denote the tube domain $\Omega = \{(z,t) : a < t < b, |z| < R\}$. Lower ground this cylinder denote by $D = \{t = a, |z| < R\}$ and lateral surface denote by $S = \{a < t < b, |z| = R\}, z = x + iy$. In Ω we shall consider the following integral equation

$$\varphi(t,z) + \int_{a}^{t} \frac{K_{1}(t,\tau)}{\tau-a} \varphi(\tau,z) d\tau + \frac{1}{\pi} \iint_{D} \frac{\exp[i\theta]K_{2}(r,\rho)}{(R-\rho)(s-z)} \varphi(t,s) ds$$
$$+ \frac{1}{\pi} \int_{a}^{t} \frac{d\tau}{\tau-a} \iint_{D} \frac{K_{3}(t,\tau;r,\rho)}{(R-\rho)(s-z)} \exp[i\theta]\varphi(\tau,s) ds = f(t,z), \tag{1}$$

where $\theta = \arg s, s = \xi + i\eta, ds = d\xi d\eta, \rho^2 = \xi^2 + \eta^2, r^2 = x^2 + y^2, K_1(t,\tau) = \sum_{j=1}^n A_j \ln^{j-1}(\frac{t-a}{\tau-a}), K_2(r,\rho) = \sum_{l=1}^m B_l \ln^{l-1}(\frac{R-r}{R-\rho}), K_3(t,\tau;r,\rho) = K_1(t,\tau)K_2(r,\rho), A_j(1 \le j \le n), B_l(1 \le l \le m)$ are given constants, f(t,z) are given function, $\varphi(t,z)$ unknown function. In depend from the roots of the characteristics equations

$$\lambda^{n} + \sum_{j=1}^{n} A_{j}(j-1)!\lambda^{n-j} = 0, \mu^{m} + \sum_{l=1}^{m} B_{l}(l-1)!\mu^{m-j} = 0$$

obtained representation the manifold solution of the integral equation (1), by marbitrary functions $\Phi_l(t, z)(1 \le l \le m)$ analytically by variables z and continuously by variables t and n arbitrary function $C_j(z)$ $(1 \le j \le n)$ continuously by variables z.

Keywords: tube domain; singular kernels; manifold solution; logarithmic singularity.

2010 Mathematics Subject Classification: 44A15, 35C10, 45E10

References

- N. Rajabov; New methods for Volterra type integral equation with boundary singular point, New Trends in Analysis and interdisciplinary applications, selected contributions of the 10th ISAAC congress, Macau 2015, Birkhauser, Springer International Publishing AG, 121–127, 2017.
- [2] N. Rajabov; Volterra type integral equation with boundary and interior fixed singularity and super- singularity kernels and their application, LAP LAMBERT Academic Publishing, Germany, 2011.