Generalized three-dimensional singular integral equation by tube domain

Nusrat Rajabov
Research Institute of the Tajik National University, Tajikistan nusrat38@mail.ru

$$
\begin{align*}
& \text { Abstract: In this work, we investigate one class of three- dimensional com- } \\
& \text { plex integral equation by tube domains, ave in lower basis and lateral surface } \\
& \text { and may have singularity. } \\
& \text { Let } \Omega \text { denote the tube domain } \Omega=\{(z, t): a<t<b,|z|<R\} \text {. Lower } \\
& \text { ground this cylinder denote by } D=\{t=a,|z|<R\} \text { and lateral surface } \\
& \text { denote by } S=\{a<t<b,|z|=R\}, z=x+i y \text {. In } \Omega \text { we shall consider the } \\
& \text { following integral equation } \\
& \qquad \varphi(t, z)+\int_{a}^{t} \frac{K_{1}(t, \tau)}{\tau-a} \varphi(\tau, z) d \tau+\frac{1}{\pi} \iint_{D} \frac{\exp [i \theta] K_{2}(r, \rho)}{(R-\rho)(s-z)} \varphi(t, s) d s \\
& \qquad+\frac{1}{\pi} \int_{a}^{t} \frac{d \tau}{\tau-a} \iint_{D} \frac{K_{3}(t, \tau ; r, \rho)}{(R-\rho)(s-z)} \exp [i \theta] \varphi(\tau, s) d s=f(t, z) \tag{1}
\end{align*}
$$

where $\theta=\arg s, s=\xi+i \eta, d s=d \xi d \eta, \rho^{2}=\xi^{2}+\eta^{2}, r^{2}=x^{2}+y^{2}, K_{1}(t, \tau)=$ $\sum_{j=1}^{n} A_{j} \ln ^{j-1}\left(\frac{t-a}{\tau-a}\right), K_{2}(r, \rho)=\sum_{l=1}^{m} B_{l} \ln ^{l-1}\left(\frac{R-r}{R-\rho}\right), K_{3}(t, \tau ; r, \rho)=K_{1}(t, \tau) K_{2}(r, \rho)$, $A_{j}(1 \leq j \leq n), B_{l}(1 \leq l \leq m)$ are given constants, $f(t, z)$ are given function, $\varphi(t, z)$ unknown function. In depend from the roots of the characteristics equations

$$
\lambda^{n}+\sum_{j=1}^{n} A_{j}(j-1)!\lambda^{n-j}=0, \mu^{m}+\sum_{l=1}^{m} B_{l}(l-1)!\mu^{m-j}=0
$$

obtained representation the manifold solution of the integral equation (1), by m arbitrary functions $\Phi_{l}(t, z)(1 \leq l \leq m)$ analytically by variables z and continuously by variables t and n arbitrary function $C_{j}(z)(1 \leq j \leq n)$ continuously by variables z.

Keywords: tube domain; singular kernels; manifold solution; logarithmic singularity.

References

[1] N. Rajabov; New methods for Volterra type integral equation with boundary singular point, New Trends in Analysis and interdisciplinary applications, selected contributions of the $10^{\text {th }}$ ISAAC congress, Macau 2015, Birkhauser, Springer International Publishing AG, 121-127, 2017.
[2] N. Rajabov; Volterra type integral equation with boundary and interior fixed singularity and super- singularity kernels and their application, LAP LAMBERT Academic Publishing, Germany, 2011.

