Cordoba-Cordoba type inequality on homogenous Lie groups

Aidyn Kassymov¹, Durvudkhan Suragan²

¹Institute of Mathematics and Mathematical Modeling, Kazakhstan kassymov@math.kz

²Institute of Mathematics and Mathematical Modeling, Kazakhstan suragan@math.kz

Abstract: Let $s \in [0, 1]$ and $x \in \mathbb{R}^n$, $n \ge 2$. In the work [1], authors show that the following inequality for the fractional Laplacian

(1)
$$2f(x)(-\Delta)^s f(x) \ge (-\Delta)^s f^2(x),$$

where $(-\Delta)^s$ is the fractional Laplacian, $x \in \mathbb{R}^n$ and $f(x) \in C_0^2(\mathbb{R}^n)$.

This inequality is using for the maximum principle of the quasi-geostrophic equations. Also, in the works [2] generalized the Cordoba-Cordoba inequality,

(2)
$$pf(x)(-\Delta)^s f(x) \ge (-\Delta)^s f^p(x),$$

where $(-\Delta)^s$ is the fractional Laplacian, $p > 0, x \in \mathbb{R}^n$ and $f(x) \in C_0^2(\mathbb{R}^n)$.

In the work [3], author generalized these inequalities for the fractional Laplacian. Our main aim of this talk is to establish analogues of the Cordoba-Cordoba inequality and its generalizations for the fractional sub-Laplacian on the homogenous Lie groups.

In this talk, we show an analogue of the Cordoba-Cordoba type inequality for the fractional sub-Laplacian on the homogenous Lie groups. Also, we show generalized analogue the Cordoba-Cordoba type inequality on the homogenous Lie groups.

The authors were supported in parts by the grant AP05130981 as well as by the MES RK target programm BR05236656.

Keywords: Cordoba-Cordoba inequality, fractional sub-Laplacian, homogenous Lie groups.

2010 Mathematics Subject Classification: 22E30, 43A80

References

- A. Cordoba and D. Cordoba, A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys., 249: 511–528, (2004).
- [2] N. Ju. The maximum principle and the global attractor for the dissipative 2D quasigeostrophic equations. Commun. Math. Phys., 255: 161–181, (2005).
- [3] J. Wu. Lower bound for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. *Commun. Math. Phys.*, **263**: 803–831, (2006).