Trajectory and global attractors for termo-Voigt model

Andrey Zvyagin

Voronezh State University, Voronezh, Russian Federation zvyagin.a@mail.ru

Abstract: Let Ω be bounded domain in the space \mathbb{R}^n , n = 2, 3, with a smooth boundary $\partial \Omega$. We consider the following initial-boundary value problem

(1)
$$\frac{\partial v}{\partial t} + \sum_{i=1}^{n} v_i \frac{\partial v}{\partial x_i} - 2 \text{Div}(\nu(\theta)\mathcal{E}(v)) - \varkappa \frac{\partial \Delta v}{\partial t} + \nabla p = f;$$

(2) div
$$v = 0;$$
 $v|_{t=0} = v_0, x \in \Omega;$ $v|_{\partial\Omega \times [0, +\infty]} = 0;$

(3)
$$\frac{\partial\theta}{\partial t} + \sum_{i=1}^{n} v_i \frac{\partial\theta}{\partial x_i} - \chi \Delta \theta = 2\nu(\theta)\mathcal{E}(v) : \mathcal{E}(v) + 2\varkappa \frac{\partial\mathcal{E}(v)}{\partial t} : \mathcal{E}(v) + g;$$

(4)
$$\theta|_{t=0} = \theta_0, \quad x \in \Omega; \qquad \theta|_{\partial\Omega \times [0, +\infty]} = 0.$$

Here, $v = (v_1(t, x), \ldots, v_n(t, x))$ is un unknown vector-valued velocity function of particles in the fluid, p = p(t, x) is un unknown pressure, f = f(t, x)is the external force. The divergence Div C of the tensor $C = (c_{ij}(t, x))$ is the vector with with coordinates $(\text{Div } C)_j = \sum_{i=1}^n (\partial c_{ij}/\partial x_i);$

$$\mathcal{E}(v) = (\mathcal{E}_{ij}(v)), \quad \mathcal{E}_{ij}(v) = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right), \quad i, j = \overline{1, n},$$

is the strain-rate tensor; $\nu > 0$ is the fluid viscosity, \varkappa is the retardation time, v_0 and θ_0 are given functions.

Theorem 1. The trajectory space \mathcal{H}^+ of problem (??)-(??) has the minimal trajectory attractor \mathcal{U} and the global trajectory attractor \mathcal{A} .

This research was supported by the Ministry of Education and Science of the Russian Federation (grant 14.Z50.31.0037).

Keywords: Non-Newtonian fluid, trajectory attractor, global attractor, existence theorem

2010 Mathematics Subject Classification: 35B41, 35Q35, 76D03

References

 A.V. Zvyagin, Attractors for a model of polymer motion with objective derivative in the rheological relation // Doklady Mathematics, vol. 88, no 3, 730-733, 2013.