About one inverse problem of time fractional evolution with an involution perturbation

Baurzhan Aibek ${ }^{1}$, Aizat Aimakhanova ${ }^{1,2}$, Gani Besbaev ${ }^{1,3}$, Makhmud Sadybekov ${ }^{1}$
${ }^{1}$ Institute of Mathematics and Mathematical Modeling, Kazakhstan, ${ }^{2}$ Asfendiyarov Kazakh National Medical University, Kazakhstan
${ }^{3}$ Auezov South Kazakhstan State University, Kazakhstan
jpartskz@gmail.com, aizat.68@mail.ru, besbaev@math.kz, sadybekov@math.kz

Abstract

We consider an inverse problem for a one-dimensional fractional evolution equation with involution and with periodic boundary conditions with respect to a space variable.

We will consider a process which is so slow that it is described by an evolutionary equation with a fractional time derivative. Thus, this process is described by equation

$$
\begin{equation*}
D_{*}^{\alpha} \Phi(x, t)-\Phi_{x x}(x, t)+\varepsilon \Phi_{x x}(-x, t)=f(x) \tag{1}
\end{equation*}
$$

in the domain $\Omega=\{(x, t):-\pi<x<\pi, 0<t<T\}$. Here $f(x)$ is the influence of an external source that does not change with time; $t=0$ is an initial time point and $t=T$ is a final one; and the derivative D_{*}^{α} defined in [1] as

$$
D_{*}^{\alpha} u(x, t)=D_{0 t}^{\alpha}\left\{u(x, t)-u(x, 0)-t u_{t}(x, 0)\right\}, 1<\alpha<2
$$

is a Caputo derivative for a regular function built on the Riemann-Liouville derivative $D_{0 t}^{\alpha}$. Such a Caputo derivative allows us to impose initial conditions in a natural way.

As the additional information we take values of two initial and one final conditions of the temperature

$$
\begin{equation*}
\Phi(x, 0)=\phi(x), \quad \Phi_{t}(x, 0)=\rho(x), \quad \Phi(x, T)=\psi(x), \quad x \in[-\pi, \pi] \tag{2}
\end{equation*}
$$

Since the wire is closed, it is natural to assume that the temperature at the ends of the wire is the same at all times:

$$
\begin{equation*}
\Phi(-\pi, t)=\Phi(\pi, t), t \in[0, T] . \tag{3}
\end{equation*}
$$

Consider a process in which the temperature at one end at every time point t is proportional to the (fractional) rate of change speed of the average value of the temperature throughout the wire. Then,

$$
\begin{equation*}
\Phi(-\pi, t)=\gamma D_{*}^{\alpha} \int_{-\pi}^{\pi} \Phi(\xi, t) d \xi, t \in[0, T] \tag{4}
\end{equation*}
$$

Here γ is a proportionality coefficient.

Thus the investigated process is reduced to the following mathematical inverse problem: Find a right-hand side $f(x)$ of the subdiffusion equation (1), and its solution $\Phi(x, t)$ subject to the initial and final conditions (2), the boundary condition (3), and condition (4).

This research is financially supported by a grant AP05133271 and by the target program BR05236656 from the Science Committee from the Ministry of Science and Education of the Republic of Kazakhstan.

Keywords: Inverse problem; fractional evolution equation; equation with involu- tion; periodic boundary conditions; method of separation of variables.

2010 Mathematics Subject Classification: 35K20, 35L15, 35R11, 35R30

References

[1] B. Ahmad, A. Alsaedi, M. Kirane, R.G. Tapdigoglu; An inverse problem for space and time fractional evolution equations with an involution perturbation, Quaestiones Mathematicae, vol. 40, no. 2, 151-160, 2017.

