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Let L be any operator related to the operation of the form Lu = —u” (z) +
au” (=z) +q(x)u(r) + g (r)u(v(2)), -1 <z <1, (1)
and defined on a dense in Ly (—1,1) domain D (L) . The operation (1) contains
the argument’s transform vy (z) = —z, in its main term. This transform is
called a simple involution (reflection) of the segment [—1; 1] and also n arbitrary
involution v (z) in the lower term. The parameter « in (1) belongs to (-1;1),
the coefficients ¢ (x) and ¢, () are arbitrary and complex-valued integrable
on [—1; 1] functions, the involution v (z) is any absolutely continuous function
which has an essentially bounded derivative on [—1;1].

The particular form of the domain D (L) will not be refined below; the
operator L can be generated by the functional-differential operation (3.1), for
example, with some boundary conditions on the segment [—1;1]. We only
assume that the domain D (L) contains only functions that, together with
their first derivatives, are absolutely continuous on the interval (—1;1), while
the root functions of the operator L are considered as regular solutions of the
corresponding equations with a spectral parameter.

Following II'in [1], an eigenfunction (or a root function of the zero order)
u(x), that corresponds to the operator (3.1) and an eigenvalue A € C is
defined as an arbitrary non trivial solution of the equation Lu = Au. Here and
throughout, a regular solution of the equation Lu = f with a given right-hand
side f € Ly (—1,1) is understood to be an arbitrary function u (x) from the
class W2 (—=1,1)N Ly (—1,1), that satisfies this equation almost everywhere on
(—1;1).

Let @ (z) — be a root function of order (k — 1) (k > 1), corresponding to an
eigenvalue A\. Then the regular solution of the equation Lu = Au — u will be
called its counterpart root (associated) function of order k.

For each eigenvalue A € C'; we have there by defined a chain of root functions
ug (x;\), k>0 that satisfy the relations
Luy, (z;\) = Ay (23 \) — sgnk - up_q (T3 N) (2)
moreover, ug (z;A) Z 0 on (—1;1).
Any count able set A = {A} C C defines the system of root functions
U = {ug(z;\) |k =0,...,m(\),\ €A}; here then on negative integer m ()

will be called the rank of the corresponding eigenfunction ug (x; A) .
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Left the system U satisfy the following conditions A:

A1) the system U is complete and minimal in Ly (—1,1);
A2) a system V' that is biorthogonally adjoint to U consists of root functions
v (z; M), 1 =0,...,m(\), X € A, m(\*) = m(\), (in the above-defined
sense) of the formal adjoint operation

L'v =" (2) + av” (—2) + ¢ () v (2) =V (x) g (v (@))v (v (), (3)
and the relation (uy (+; A), Um(x)—i (-; A*)) = 1 is valid if and only if k¥ = [ and
A = \; while in the remaining cases the inner product on the left-hand side
in relation (3.4) is zero;

A3) the ranks of the eigenfunctions are uniformly bounded: supm (A) < oo
A€A

and the condition that the set A belongs to the Carleman parabole is satisfied

sup ‘Im\/X‘ < o0;
AEA

A4) the following uniform estimate of the ”sum of units” is valid:

sup Z 1 < 0.

=1
AeA:|ReyA=B|<1
Theorem 1. Let the conditions 1-4 be satisfied and let the involution v ()

occurring in (1) be an arbitrary continuous function with the derivative that is
essentially bounded on the segment [—1,1]. Then each of the systems U and
V of root functions of the operators (1) and (3), respectively, forms an uncon-
ditional basis in Lo (—1,1) if and only if the uniform estimate of the product
of norms [ug (s M)l * ||vmo-n (-;X)HQ < Mholds for all k = 0,...,m(\)and
A € AThe main theorem is complemented with the proof of the necessity of
condition A4 in the case where the involution v (x)in the operator (1) is a
reflection.

Theorem 2. Let the condition A3 be satisfied and, in addition, let v (x) = —x
If the system of root functions U that is normed in Ly (—1,1) possesses the
Bessel property, then the uniform estimate of the ”"sum of units” A4 is valid.
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