Criterion for the unconditional basicity of the root functions related to the second-order differential operator with involution

A.M. Sarsenbi ${ }^{1}$, L.V. Kritskov ${ }^{2}$
${ }^{1}$ M. Auezov South Kazakhstan State University, Shymkent, Kazakhstan
${ }^{2}$ M. Lomonosov Moscow State University, Moscow, Russia abzhahan@gmail.com

Let L be any operator related to the operation of the form $L u \equiv-u^{\prime \prime}(x)+$ $\alpha u^{\prime \prime}(-x)+q(x) u(x)+q_{v}(x) u(v(x)),-1<x<1$, (1)
and defined on a dense in $L_{2}(-1,1)$ domain $D(L)$. The operation (1) contains the argument's transform $v_{0}(x)=-x$, in its main term. This transform is called a simple involution (reflection) of the segment $[-1 ; 1]$ and also n arbitrary involution $v(x)$ in the lower term. The parameter α in (1) belongs to $(-1 ; 1)$, the coefficients $q(x)$ and $q_{v}(x)$ are arbitrary and complex-valued integrable on $[-1 ; 1]$ functions, the involution $\nu(x)$ is any absolutely continuous function which has an essentially bounded derivative on $[-1 ; 1]$.

The particular form of the domain $D(L)$ will not be refined below; the operator L can be generated by the functional-differential operation (3.1), for example, with some boundary conditions on the segment $[-1 ; 1]$. We only assume that the domain $D(L)$ contains only functions that, together with their first derivatives, are absolutely continuous on the interval $(-1 ; 1)$, while the root functions of the operator L are considered as regular solutions of the corresponding equations with a spectral parameter.

Following Il'in [1], an eigenfunction (or a root function of the zero order) $u(x)$, that corresponds to the operator (3.1) and an eigenvalue $\lambda \in \mathbb{C}$ is defined as an arbitrary non trivial solution of the equation $L u=\lambda u$. Here and throughout, a regular solution of the equation $L u=f$ with a given right-hand side $f \in L_{1}(-1,1)$ is understood to be an arbitrary function $u(x)$ from the class $W_{1}^{2}(-1,1) \cap L_{2}(-1,1)$, that satisfies this equation almost everywhere on $(-1 ; 1)$.

Let $\tilde{u}(x)$ - be a root function of order $(\mathrm{k}-1)(k \geq 1)$, corresponding to an eigenvalue λ. Then the regular solution of the equation $L u=\lambda u-\tilde{u}$ will be called its counterpart root (associated) function of order k .

For each eigenvalue $\lambda \in C$, we have there by defined a chain of root functions $u_{k}(x ; \lambda), k \geq 0$ that satisfy the relations

$$
\begin{equation*}
L u_{k}(x ; \lambda)=\lambda u_{k}(x ; \lambda)-\operatorname{sgnk} \cdot u_{k-1}(x ; \lambda), \tag{2}
\end{equation*}
$$

moreover, $u_{0}(x ; \lambda) \not \equiv 0$ on $(-1 ; 1)$.
Any count able set $\Lambda=\{\lambda\} \subset \mathbb{C}$ defines the system of root functions $U=\left\{u_{k}(x ; \lambda) \mid k=0, \ldots, m(\lambda), \lambda \in \Lambda\right\} ;$ here then on negative integer $m(\lambda)$ will be called the rank of the corresponding eigenfunction $u_{0}(x ; \lambda)$.

Left the system U satisfy the following conditions A:
A1) the system U is complete and minimal in $L_{2}(-1,1)$;
A2) a system V that is biorthogonally adjoint to U consists of root functions $v_{l}\left(x ; \lambda^{*}\right), l=0, \ldots, m\left(\lambda^{*}\right), \lambda^{*} \in \bar{\Lambda}, m\left(\lambda^{*}\right)=m(\lambda)$, (in the above-defined sense) of the formal adjoint operation

$$
\begin{equation*}
L^{*} v=-v^{\prime \prime}(x)+\alpha v^{\prime \prime}(-x)+\overline{q(x)} v(x)-v^{\prime}(x) \overline{q_{v}(v(x))} v(v(x)), \tag{3}
\end{equation*}
$$

and the relation $\left(u_{k}(\cdot ; \lambda), v_{m(\lambda)-l}\left(\cdot ; \lambda^{*}\right)\right)=1$ is valid if and only if $k=l$ and $\lambda^{*}=\bar{\lambda}$; while in the remaining cases the inner product on the left-hand side in relation (3.4) is zero;

A3) the ranks of the eigenfunctions are uniformly bounded: $\sup _{\lambda \in \Lambda} m(\lambda)<\infty$
and the condition that the set Λ belongs to the Carleman parabole is satisfied $\sup _{\lambda \in \Lambda}|\operatorname{Im} \sqrt{\lambda}|<\infty ;$

A4) the following uniform estimate of the "sum of units" is valid:

$$
\sup _{\beta \geq 1} \sum_{\lambda \in \Lambda:|\operatorname{Re} \sqrt{\lambda-\beta}| \leq 1} 1<\infty .
$$

Theorem 1. Let the conditions 1-4 be satisfied and let the involution $\nu(x)$ occurring in (1) be an arbitrary continuous function with the derivative that is essentially bounded on the segment $[-1,1]$. Then each of the systems U and V of root functions of the operators (1) and (3), respectively, forms an unconditional basis in $L_{2}(-1,1)$ if and only if the uniform estimate of the product of norms $\left\|u_{k}(\cdot ; \lambda)\right\|_{2} \cdot\left\|v_{m(\lambda)-k}(\cdot ; \bar{\lambda})\right\|_{2} \leq M$ holds for all $\mathrm{k}=0, \ldots, \mathrm{~m}(\lambda)$ and $\lambda \in \Lambda$ The main theorem is complemented with the proof of the necessity of condition A4 in the case where the involution $\nu(x)$ in the operator (1) is a reflection.

Theorem 2. Let the condition A3 be satisfied and, in addition, let $\nu(\mathrm{x})=-\mathrm{x}$ If the system of root functions U that is normed in $\mathrm{L}_{2}(-1,1)$ possesses the Bessel property, then the uniform estimate of the "sum of units" A4 is valid.

ACKNOWLEDGMENTS

This work was supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan, grant AP05131225.

References

[1] V.A. Il'in, L. Kritskov; Properties of spectral expansions corresponding to non self adjoint differential operators, J. Math. Sci. (NY), 116, No.5, pp. 3489-3550., 2003.

