Approximation of fractional semilinear Cauchy problem in a Banach spaces

Sergey Piskarev

SRCC of Lomonosov Moscow State University Russia piskarev@qmail.com

Abstract: This talk is devoted to approximation of fractional Cauchy problem

(1)
$$(\mathbf{D}_t^{\alpha} u)(t) = Au(t) + f(t, u(t)), \quad 0 < t \le T, \quad 0 < \alpha \le 1,$$

$$u(0) = u^0,$$

in a Banach space E, where \mathbf{D}_t^{α} is the Caputo-Dzhrbashyan derivative in time, the operator A generates exponentially bounded analytic and compact resolution family $S_{\alpha}(\cdot, A)$ and the function $f(\cdot, \cdot)$ is smooth in both arguments. The mild solution of (1) is defined as a function $u(\cdot) \in C([0, T]; E)$ which satisfies equation

(2)
$$u(t) = S_{\alpha}(t, A)u^{0} + \int_{0}^{t} P_{\alpha}(t - s, A)f(s, u(s))ds,$$

where for any $x \in E$ one has

$$\lambda^{\alpha-1}R(\lambda^{\alpha},A)x = \int_0^{\infty} e^{-\lambda t} S_{\alpha}(t)xdt, R(\lambda^{\alpha},A)x = \int_0^{\infty} e^{-\lambda t} P_{\alpha}(t)xdt, Re\lambda > \omega.$$

We consider semidiscrete approximation theorem on general approximation scheme under condition of compact convergence of resolvents.

Throughout this note we mainly used techniques from our paper [1], but the right hand side is given by the function $f(\cdot,\cdot)$ defined in different way convenient for applications. So we consider approximation of operator family $P_{\alpha}(\cdot)$ with weak singularity.

The author was partially supported by grant of Russian Foundation for Basic Research 17 - 51 - 53008.

Keywords: Fractional equations, Cauchy problems, semilinear problems, general approximation scheme, compact convergence of operators, index of solution

2010 Mathematics Subject Classification: 34G20, 49M25, 47D99, 65J15

REFERENCES

[1] Ru Liu, Miao Li and Sergey Piskarev, Approximation of Semilinear Fractional Cauchy Problem, Comput. Methods Appl. Math., vol.15, no 2, 203–212, 2015.